/YA PF

High Definition Profiling
User’s Guide

Duke Software www.duke-software.com

For Release V2.R2.M27 and later

revision date 05-27-2015

Copyright © 2015 Duke Software LLC

| z/XPF User’s Guide

PREFACE
PROPRIETARY LEGEND

z/XPF and its documentation (collectively, “Product”), including copies thereof, are the confidential
and proprietary property of Duke Software LLC (“Owner”). Product may be used only by those
organizations that are licensed by Owner for such use and only in the manner so licensed. The
program and documentation may not be published, reproduced, distributed, or made available to third
parties for any purpose without the expressed written permission of Owner; however, a reasonable
number of copies may be made of the documentation (including the copyright notices and proprietary
legends thereon) as is necessary for the legitimate use of Product within a licensed organization.

Except as may be otherwise expressed in a signed agreement between Owner and Customer,
Owner makes no representations or warranties, expressed or implied, including, but not limited to,
the implied warranties of merchantability and fithess for a particular purpose, the warranty of freedom
from rightful claims by way of infringement and the like, and any warranty as to accuracy.

CONTACTING DUKESOFTWARE

Phone: 281-395-5570
E-Mail: David.Day@duke-software.com
Home Page: http://www.duke-software.com

Table of Contents

Chapter1-Welcome to z/XPF i ittt ennnns 1
1-1 What is zZ/XPF 2. . o 1

1-2 What Is zZ/XPF’'s Anatomy 7 4

1-3 Schedulinga New Data Capture 5

1-4 Immediate Start 7

1-5 Using SLIP/PER with zZ/XPF 8

1-6 Adding Text/Comments To A Data Capture Request. 13

1-7 Future Start-By-Jobname. 14

1-8 Future Start by Date and Time-of-Day 15

1-9 About ZXPFLOG. 16
Chapter 2 - Working With z/XPF RequestQueuesciiiiinnnnnn 17
2-1StopanActive DataCapture 17

2-2 Display Requests In Start-By-Jobname Queue 18

2-3 Display/Cancel Session Requests In Start-By-Time Queue 19
Chapter 3 - z/XPF’s Control Statements i 20
3-1 Input statements for z/XPF’s started task (the server address space)........ 20

3-2 z/XPF Control Statements Explained. 20
LC=XXXX=XXXX-XKXXKKXXKK + 2 v v v ettt e e e e e e e e e ettt e 20

ALOCY OLaXXXXXX « o v v v e e e et ettt e e e e e e e 20
ALOCUNITEXXXXXXXX v v v e ettt e e e e e e e e e ettt e e e 21
DATA_CAPTURE_DSN_HLQ=XXXXXXXX + « v v v v v e e ettt e e e e e e e e e 21
DATA_CAPTURE_DS BUFFERS=nnn............ 21
DB2=XXXX,SDSNLOAD=YYYYY.ZZZ7Z7Zc.c..... 22
FORCE_VENDOR_TABLE=YES 22
INTERVAL_TOLERANCE_PERCENTAGE=nn....................... 22
MAP_LMOD_DURING_CAPTURE=YES/NO 23
MAPLPA=NO 23
MAP_LPAMOD=xxxxXxXX,DSN=yyyyy 24
MAX_MSG_DURING_CAPTURE=1000/NNNNNN. 24
NBR_COPYCYCLES _PER _SECOND=50/nnn....................... 24

PR_BUFFERS=NNN. 25

iv

z/XPF User’s Guide

PR BUFFERS=ASIS. 25
RACF_PROFILE="hIq” e 25
RESET _SRVCLASS=XXXXXX . e 26
RESTARTDSN=dsname e 26
SLIP_COMMANDS=YES/NO e 26
SLIP I D=XXXX . ottt 26
SSNAME=ZXPE/XXXX ottt e 27
SSCLEAR=YES/NO 27
USER TRACE _NBR=0-E 27
WRITE_TO LOGREC=YES e 27
Chapter 4: z/XPF’s Auxiliary Macrosottt it e e e e e e e e as 28
4-1 ZXPFTRAC — z/XPF’s “User Trace” Function 28
4-2 How touse ZXPFTRAC. e 28
4-3 Understanding the output of ZXPFTRAC 29
4-4 ZXPFDYNL - Tracking the “Life-span” of modules loaded by Directed Loads . . 31
4-5 ZXPFDYNL macro specifications. 31
4-6 Tracking the activity of the ZXPFDYNLMacro 34
Chapter 5 -Creating Reportst i i i ittt et enann 35
5-1 Summary Reporting vs. Detail Reporting. 35
5-2 z/XPF’s Reporting Hierarchy 35
5-3 z/XPF and Virtual Storage 36
5-4 How z/XPF Maps Load Modules 36
5-5 Mapping “User-defined” Load Modules 37
5-6 Allocating a dataset forreporting 38
5-7 Beginning the Reporting Process. 39
5-8 Option 1: Allocating A Data Capture Dataset 41

5-9 Option 2: Display user comments in selected source data capture datas-
LS 43
5-10 Option 3: Listing Library Contents 46
5-11 Option 4: Freeing Allocated Source Capture Datasets 48
5-12 Option 5: Map load modules/display load module maps 49

5-13 Summary Reporting. 51

5-14 Option 6: Create Profile Summary Reports - zZXPF’s Dynamic ISPF

PANEIS . . . 51

5-15 Navigating in Dynamic ISPF 53

Z/IXPF’'s FIND Command e 54

5-16 Data Categories, by Work Unit, Within Time Segment 55

5-17 Most Frequently Observed PSW/Instruction Report 65

5-18 Processor Utilization Statistics 67

5-19 Option 7: Creating much smaller Time Segments in your report 72

5-20 Source Statement Support 76

Chapter 6 - Creating DB2-Specific Summary Reports. 87
6-1 How z/XPF Uses DB2 Catalog Information. 87

6-2 Accessing z/XPF’s DB2 Summary Reports. 89

Chapter 7 -Detail Reporting.t i i i ittt enann 99
7-1 Option 8: Create a profile detailreport. 99

7-2 Detail reporting by Work UnitName 101

7-3 Detail reporting by Time other than Data Capture Begin and End 105

7-4 Detail reporting by Record Number In source Dataset 106

7-5 Detail reportingby Record Type 107

7-6 Detail reporting by Location Of PSW 108

7-7 Detail reporting by Load Module Name 108

7-8 Tips And Techniques For Creating Detail Reports 109
Reporting on device /O Activity: 109

To get a “feel” for how 1/O operations affect a program: 109

Reporting on Page Faults and Program Interrupts:. 110

Reportingon Abends ina program: 110

To investigate lock suspensiontimes: 11

Time Spent Waiting ForALatch: 112

ENQ Contention using ISGENQ 113

7-9 Understanding the Fields in EventRecords. 114
Chapter 8 -Using z/XPF-PC et e e e e e e n s 124
8-1 System Requirements for zZ/XPF-PC 124

8-2 Installing zZ/XPF-PC 124

vi | 2z/XPF User's Guide

8-3 Creating an FTP Connection to Your Mainframe 125
8-4 Prepare a z/XPF Data Set for Download to the Desktop 126
8-5 Viewing Reports with the z/XPF-PC GUl interface. 130
8-6 The zZ/XPF-PCdisplay 131
8-6 A Short Review of z/XPF’s Reporting Structure. 131
8-7 Drilling down into “Events Across Time” 132
8-8 Obtaining Detailed information, and drilingdown 134
8-9 The Work Units Report 143
8-10 The Event Breakdown Report 144
8-11 Contention/Wait Time. 145
8-12SVC Breakdown 149
8-13 PC/PT/PR Breakdown. 150
COoNCIUSION 151
About zZ/XPF-PC’s Author. 151

Chapter 9 IndexX i i ittt st s st e e e aananan s 152

| v

Chapter 1 - Welcome to z/XPF

Welcome to z/XPF, an entirely new way of profiling applications in z/OS. This book is intended
to make using z/XPF as easy as possible, but support is always only a phone call away. If
we can be of help to you, please don’t hesitate to call us.

1-1 What is z/XPF?

z/XPF is the world’s first “Event” profiler, an absolutely unique way to measure resource
consumption by applications (and systems level) programs running in address spaces.

In order to define the term “Event profiler”, it's useful to define the rest of the profilers. All
other profilers can be considered “State profilers”. By that we mean that the other profilers
periodically stop a target address space in order to run control block chains, investigate
the state of the programs running there and to gather any other information you may need.
Then, they re-start the address space until the next sample interval. Thus, older profiling
technologies are based on recording the “State” of an address space.

There are several advantages in using State profiling:

» These products are highly evolved, and have been on the market for decades.

* The technology is therefore robust.

 The market is mature, and many users have spent many years with these products.
There is a certain “comfort” factor.

There are also disadvantages to State profiling:

* In between sampling intervals, State profilers are entirely “blind” to what’s going on in the
target address space. If an action takes place entirely within an interval cycle, a State
profiler may not be able to detect it.

« State profilers depend upon stopping an address space, thereby directly affecting that
which they are trying to measure.

» State profilers “hook” into the system and the target address space.

» State profilers are profoundly expensive.

z/XPF is the world’s first “Event” profiler. It works in an entirely different way. Instead of
stopping/starting an address space, z/XPF monitors and captures Trace Records from the
processor’s Trace Table. It captures this data and stores it for reporting.

Whenever an interrupt is processed, a Trace Record is written to the Trace Buffers. That
happens for an I/O operation, an SVC, and much more.

There are two kinds of Trace Records: Explicit and Implicit.

» Explicit Trace Records come with a system time-stamp and are generated for interrupts

2

| z/XPF User’s Guide

and I/0O sub-channel events.

* Implicit Trace records do not have a time-stamp and are used for Program Call/Return/
Transfer. However, z/XPF is able to make a reasonable determination for a time-stamp
by comparing Program Calll/Return/Transfer to the Trace Records nearest to them that
DO bear a time stamp.

z/XPF “watches” Trace Records and can make a time-stamped log stream out of them. By
doing this, it can detect the elapsed time of an Event with either complete precision (in the
case of explicit Trace records), or with a high degree of accuracy (in the case of implicit Trace
Records). This is unprecedented - a completely new architecture for profiling.

As a result of this approach, z/XPF’s Event profiling archtecture has certain advantages:

» Because z/XPF reads Trace Records, it can capture MILLIONS of data points, rather than
thousands. This delivers a much higher level of granularity than a State profiler can.

« z/XPF has NO interaction with the target address space. It has no effect on what it
measures.

» z/XPF has no “hooks” to the operating system. It “watches” a couple of exit points.

« z/XPF’s own footprint is very small. After all, the data is just there, and z/XPF merely
captures and collates it.

» z/XPF requires no JCL changes in order to operate. You merely point it at an address
space.

« z/XPF can measure the elapsed time for SVCs, 1/0, memory management events, wait
times, contention, page faults, locks, latches and more.

» z/XPF can profile against Task-mode code AND SRB-mode code.

* You may even create your own “Trace records” to keep track of events within your own
programs.

» z/XPF offers the ability to set SLIP traps for Instruction Fetch or Branch Trace. That’s truly
“high-definition” profiling!

The list goes on, but the point is this: For the first time, a Software Engineer or Capacity
Planner can get complete information on the actions of a program in a target address space.
Since Trace Records are generated for every interrupt, you get much more granularity in the
data, which creates greater statistical certainty. z/XPF’s reporting allows you to drill down
through to the PSW level and allows you to view individual Trace Records if you need to go
that deeply into your program’s performance.

Event profiling is an entirely new architecture. It is truly an elegant solution, in the classic
sense.

STOP. Please read this.

Everyone is busy, with a huge task list. We're all in a hurry to get to the next job. However,
z/XPF is SO different from other profilers that we urge you NOT TO SKIP STEPS when
installing it. For example, z/XPF’s abilities to measure DB2 applications will not work if you
haven't installed that portion of the product.

The installation itself is straightforward enough. Please follow all the steps.

z/XPF runs at a very low level in the z/OS environment. z/XPF reads Trace Records which
are generated by the interaction of every program executing on a z/OS image with the
operating system. There can be millions of trace records generated for any application,
which means that:

+ z/XPF has to execute at high enough priority to examine Trace Records before the
Trace Table wraps. The factory default logic will issue an operator command to set
the server address space to the SYSSTC WLM workload class. In some environ-
ments where there are many address spaces already assigned to this class, this
may not be enough priority to insure that z/XPF gets control often enough to keep
abreast of the activity occurring in the LPAR. The factory default logic will also set
the number of processor trace buffers to 512 from the z/OS default of 256. If/when
the ZXPFLOG contains messages indicating a loss of time, or gap, in the copying
of trace records, consider setting the number of processor trace buffers higher than
512. This can be accomplished via an operator command, or using a control state-
ment in the z/XPF start-up control dataset.

+ z/XPF profiles job steps, not entire jobs.

+ If the target application you are profiling is extremely active, and you set z/XPF to
run the entire span of the jobstep, then you WILL consume a fair amount of avail-
able DASD space for the VSAM capture dataset. It is impossible to predict the
number of cylinders needed to contain the complete data capture. It is driven by
the activity of the target application. Consider setting aside a separate pool of avail-
able space for capture datasets if DASD is at a premium in your installation.

* You have to wait for the data capture to terminate to be able to produce statistics.
The environmental data that allows z/XPF to make ‘sense’ of the trace data is writ-
ten to the end of the dataset at data capture termination.

So, while other profilers are like field glasses, z/XPF is more like an electron microscope:
very useful in taking VERY granular measurements at an extremely low level. That’'s why
the ‘factory default’ setting for any data capture session is 500K records. We think that’s
enough data for you to make an informed judgment.

We’re convinced that there’s nothing more useful than z/XPF for getting definitive informa-
tion on resource consumption at the instruction level, but you have to set up and use the
tool properly. A hammer makes a poor screwdriver.

We'll gladly help you, so call us whenever you have a question. OK, let's move on.

4

z/XPF User’s Guide

1-2 What Is z/XPF’s Anatomy?

z/XPF’s anatomy is simple. It consists of:

The Data Capture component:

A server address space that runs a highly parallelized Global SRB that captures and
stores Trace Records.

Two SMF exits for watching address space initialization and termination. They are IEFUSI
and IEFACTRT.

The Reporting component:

Front-end processing for collating captured Trace Records.

ISPF-based dynamic ISPF reporting for Summary Data.

A robust series of “filters” for Detail Reporting, so that you can see individual events.
z/XPF-PC, a GUI interface that runs on the “Wintel” desktop.

z/XPF’s requirements are rather simple as well. z/XPF needs:

A z/OS operating system at V1R10 and above;

The ability for z/XPF to issue certain Operator commands;

APF-authorized storage for z/XPF’s load libraries;

The ability to get control as often as possible in order to read Trace Records;
A goodly amount of VSAM file storage;

Virtual memory above the 2GB “bar”;

Security permissions for all of the above.

This book is intended to guide you through creating and terminating data capture sessions,
and subsequently manipulating z/XPF’s reports to yield the information you need. There’s
quite a bit of information here, and we’re happy to help you if you have questions. Support,
and product education for z/XPF is readily available, and we respond in real-time whenever
we can.

Welcome to z/XPF. We hope that it serves you well.

1-3 Scheduling a New Data Capture

Upon entry to z/XPF’s ISPF interface, the user is presented with the panel cleverly entitled,
‘PRIMARY OPTION PANEL”. There are four selections on this panel. The user can:

Schedule a new data capture session;

Display or delete a previously scheduled data capture session;
Create reports from a previous data capture.

View a z/XPF Tutorial.

See Figure 1-3-1 below:

> wbh =

---z/XPF-VERSION 02 -RELEASE ©02 -MOD LEVEL ©2 -BUILD DATE- ©02/23/2013 10.43 ---
OPTION ===2

Enter Option.

Schedule a Profile Data Capture session. Use this function To
add new requests.

Display or delete previously scheduled Data Capture Sessions.
Use this function to view the active queue, the Start-By-Jobname

queue, and the Start-By-Time queue.

Create a new summary or detail report from an existing
capture dataset. Create FTP data from capture dataset.

To view a z/XPF tutorial.

Enter HELP from this panel, or any panel within z/XPF for help
specific to the current panel.

PF3/END To Exit z/XPF

Figure 1-3-1.

Options 1 & 2 require the z/XPF server address space to be active. The user must be logged
on to the same system where that server address space is resident.

Option 3 (report generation) does not require communication with the server address space,
and may be performed on any z/OS system that has access to the desired data capture
dataset.

Option “T” (the Tutorial) may also be used without the z/XPF server running. The z/XPF
Tutorial is what we refer to as an “evolving” facility. It's intended to give the user a broad
overview of how to use z/XPF. This facility will continue to grow with the product.

6 | z/XPF User's Guide

When Option 1 is selected from the primary panel, the user is presented with a panel titled,
“‘SCHEDULE A PROFILE CAPTURE SESSION”. See Figure 1-3-2 below:

---z/XPF
OPTION

ENTER OPTION

Immediate start. Capture data for an active Job/Started Task/
TSO session.

Future start. By Jobname/Started Task name/TS0 userid.

Future start. By date and time-of-day. Capture data for a Job/
Started Task/TSD session that will be active in the future.
Data Capture session starts at a specific date/time.

Named Address Space must be active at that time or the

request is deleted.

PF3/END to return to prewvious panel

Figure 1-3-2.

There are three types of data capture requests: Immediate start, future start-by-jobname,
and future start-by-time.

1. If you wish to schedule the immediate start of a data capture session then the target
application MUST be active at that time.

2. If you schedule a “Future start. By Jobname/Started Task” data capture session,
then the data capture session will start the next time that address space becomes
active.

3. “Future start. By date and time-of-day” will start a data capture session for a specific
address space at a specific time. When this request is in the queue, the address
spaces active in the system are searched periodically. The first one located that
matches the name in the queue entry satisfies the request.

[z/XPF establishes an SMF exit for exit point IEFUSI during server initialization. This exit
is used to communicate address space start information to the z/XPF server. SMF exit
IEFACTRT is also used to communicate jobstep termination. The default session time for
data capture, once started, is to run to jobstep termination.]

1-4 Immediate Start

When Option 1 is selected from the “SCHEDULE A PROFILE CAPTURE SESSION” panel,
the next panel the user sees is entitled, “IMMEDIATE START DATA CAPTURE SESSION”.

-=-=-2/XPF - IMMEDIATE START DATA CAPTURE SESSI|IO0ON
OPTION

Start a data capture session for an active Address Space

Job/Task name or TS0 userid. T in pos tion field
y a takle

Address Space id. NMecessary if 1
space with same name.

"HHMM" form
h of the |

> ss o add PER interrupt data
to sture as . (YES/NO)
Add identifying text to capture dataset(YES/NO)

ENTER KEY TO SCHEDULE
PF3/END TO RETURN TO PREVIOUS

Figure 1-4-1.
Here is an explanation of the parameters on this panel:

Job/Task name or TSO userid: The name of the address space must be entered.
If the name is not known, enter a “?”(question mark, without the quotes). z/XPF will
display a table of active address spaces and you may select one from the table.

Address Space ID: The second variable from the top accepts the Address Space ID
number. Enter this value if the target address space name is not unique among active
address spaces on the z/OS image.

Profile Capture Session Duration: Enter “HHMM” (hours-minutes) to tell z/XPF
when to shut down the data capture session.

Max Record Count: Enter the maximum number of records you want z/XPF to
capture during the session. The default is 500,000 records. To capture ALL Trace
Records insert “OM” into this field. However, be warned that zZXPF may capture far
too much data and may overflow available VSAM space.

Use slip processing to add PER interrupt data to capture dataset: During data
capture z/XPF utilizes the interrupt activity generated by all of the active address
spaces on the z/OS image to create its profile. The more activity, the better your data
capture will be. Consider using “YES” in this field to add SLIP/PER events to the data
capture session ONLY when the system is lightly loaded. HOWEVER, be aware that
the use of SLIP can be CPU intensive.

When you enter “YES” in this field, z/XPF presents another panel that will help you to

8

| z/XPF User’s Guide

use SLIP with the product. There is a sub-topic below that discusses the use of SLIP/
PER with z/XPF entitled “Using SLIP/PER with z/XPF”.

Add Identifying Text to capture datasets (YES/NO): You may add comments to a data
capture request to remind yourself later why you initiated the data capture. The comment
area is 240 bytes in length. Any valid characters that can be entered on a keyboard can be
added as a comment. The comment area is recorded with the data capture dataset, and is
viewable in the report generation process.

1-5 Using SLIP/PER with z/XPF

z/OS has a powerful debugging mechanism within the operating system known as SLIP
processing. Use of this facility is commonly known as “setting a SLIP” or “setting a SLIP
trap”. One of the types of SLIPs that can be set is called a PER trap (“Program Event
Recording”). With this type of SLIP, the operating system can record events that indicate
execution of instructions within a program. z/XPF allows you to use SLIP. Bear in mind
that this facility provides extremely finite reporting, BUT ALSO consumes system resources,
which is why the use of SLIP may not be permitted at your site.

There are two types of PER traps that may be invoked. One records Instruction Fetch, and
the other records Successful Branch instructions. You may use only one of them at a time.
The event data can be directed to either of two locations; system trace, or a GTF trace. SLIP/
PER data contained in a GTF trace dataset can be formatted by IPCS. SLIP/PER data in the
system Trace Table is also formatted by IPCS as part of creating a dump dataset.

Within SLIP, begin and end addresses may be specified for a load module. The user may
create PER events for an entire load module, or an extent within the load module. z/XPF
submits an Operator command to set the SLIP at the end of the first interval during data
capture, and after z/XPF has identified the load module in the target address space. This
command uses the RANGE=(start,end) parameter, as opposed to specifying the load module
name.

A z/XPF Detail Report that specifies SLIP/PER records will list the records in time sequence.
The user will see the instruction address within the application load module, and can see the
sequence of instructions executed.

The SLIP command is considered “fire and forget” by z/XPF in that no check is made to
determine if the command was successful. Bear in mind that only one PER SLIP may be
active at a time. If another SLIP is already active when z/XPF tries to start one for a z/XPF
user, z/XPF’s will be ignored.

If the command is accepted, z/OS SLIP will start monitoring the virtual storage range in the
target address space, and will create events when the execution of application code falls
within the range specified on the SLIP command. You should keep in mind that the larger
the virtual storage area SLIP has to monitor, the higher the overhead. When the data capture
session terminates, another Operator command is executed to delete the SLIP.

Do NOT run a SLIP on your system without consulting with your installation systems
programmer(s). Consult the MVS Operator Commands Reference for further information on
how to use the SLIP command.

z/XPF’s use of SLIP/PER recording is controlled by the z/XPF Control Statement, “SLIP_
COMMANDS=YES/NO”.

When you DO specify “YES” in the “Use slip processing” field (from Figure 1-3-1), you will be
presented with the panel below in Figure 1-5-1 below:

---z/XPF
OPTION

Use this panel to add slip/per interrupt data to the capture
dataset during profile data capture.

xdc Name of Load Module.

Load library to use as source to map the Load Module.
TSO format.

"sysl.csw.lpalib’

Enter key to schedule
PF3/END to return to previous

Figure 1-5-1.

The name of the load module must be entered in the top variable. The name of the load
library where the module is located is entered in the 2" variable. z/XPF treats the value to
be used for the load library as a TSO name. In other words, it will add the TSO userid to
the value entered and then try to locate that library. Enclose the value in single quote marks
to have z/XPF use the value verbatim. In the example below, load module XDC located in
dataset ‘SYS1.CSW.LPALIB’ will be used.

When the information is correct, press the Enter key. z/XPF will then use dynamic allocation
to allocate the dataset, and invoke the Binder APl to map the load module. If both of these
functions are successful, the next screen you see will contain a table with all the csects and
their positions within the specified load module. Refer to Figure 1-5-2 below:

10 | z/XPF User's Guide

---z/XPF
OPTION

Csects within load module XDC
to select specific csect. Choose only one csect.

PF3/END TO EXIT

SELECT NAME Begin End Length

DBCFRONT

00000000 00003880 00003880
DBCINIT

00003880 00006728 OOO00OZ2ERAS
DBCHMEMRY

00007000 000095C8 P00025C8
DBCDAT24

000095C8 000096D8 00000110
DBCGBL

PO0O0O96D8 0000A3CO POOOOCES
DBCHSGBL

OOO0OA3CO O0O0OCERASB 0000Z2AES
DBCPAGE1

OOOOCERS 0000F4D8 POO002630
DBCSPET

O006F4D8 00010620 00001148
DBCSUB24

00010620 00012688 00002068
DBCXAC

00012688 00012EAB 00000820
DBCHMTSKG

OO012Z2EAS8 000138F8 OO0O0O0OA50
DBCHMSG24

000138F8 0001C8A8 O00OBFBO
DBCESTAE

0OO1C8A8 O001DEEO 00001638

3K 3K 3K 3K K K K K K 3K K K 3K 3K 3K K 3K 3K 3K K K K K K K KK K OK K K Bnttnm of data 3K 3K 3K K 3K 3K K K K K K K 3K K K K K K K K K K K K K K K 3K K K KK

Figure 1-5-2.

Place any non-blank character in the select column to the left of the csect name to select that
csect, then depress the enter key. You will be returned to the previous panel, but with the
selected csect information displayed. In this example, csect DBCMSGBL was selected from
the map table. See Figure 1-5-3 below:

-~ ~Z FTRPF

OPTION ===> Hi
Use this panel to add slip/per interrupt data to the capture
dataset during profile data capture.

XDC Name of load module.

Load library to use to map load module.
SYS1.CSW.LPALIB
Name of Csect within Load Module for Slip.

DBCHMSGBL

0000A3CO Csect begin offset within Load Module.
0000CERS8 Csect end offset within Load Module.

00000000 Begin offset within Csect for slip command.
00000000 End offset within csect for slip command.

Type of slip command to issue
SUCCESSFUL BRANCH
INSTRUCTION FETCH

Enter key to schedule
PF3/END to return to prewvious

Figure 1-5-3.

| 1

At this point, there is enough information known about the load module and csect to construct
a SLIP SET command. However, if you are interested in tracing only a part of the csect, the
Begin and End offset values can be altered. Figure 1-8 contains the same panel with the
offsets changed. When changing offsets, they must be specified as 8-byte values, with
leading zeroes. See Figure 1-5-4 below:

---z/XPF

OPTION ===> N
Use this panel to add slip/per interrupt data to the capture
dataset during profile data capture.

AXDC Mame of load module.

Load library to use to map load module.
SYS1.CSW.LPALIB

Name of Csect within Load Module for Slip.
DBCMSGBL

0000A3CO Csect begin offset within Load Module.
0000CEAS Csect end offset within Load Module.

00001000 Begin offset within Csect for slip command.
00002AESB End offset within csect for slip command.

Type of slip command to issue
SUCCESSFUL BRANCH
INSTRUCTION FETCH

Enter key to schedule
PF3/END to return to prewvious

Figure 1-5-4.

The last variable to fill in on this panel is the type of PER trap you want. Use “S” to select one
of them.

e SUCCESSFUL BRANCH will create an event for each branch instruction that is taken
within the offset, within the csect, and within the load module.

e INSTRUCTION FETCH will create an event for each instruction as it is fetched to be
executed.

* You may pick one parameter or the other, but not both.

[The MVS Operator Commands Reference states there isn’t much difference in overhead
between using SLIP against SUCCESSFUL BRANCH and INSTRUCTION FETCH. Both
of these event types will add size to the data capture dataset. INSTRUCTION FETCH will
increase the size at a greater rate than SUCCESSFUL BRANCH.]

When the type of SLIP has been selected, press Enter.

12 | z/XPF User’s Guide
The next panel to be displayed (in Figure 1-8) is a verification panel. The verification panel
gives the user the ability to cancel SLIP, change the settings or continue. Figure 1-5-5 below
shows the verification panel.

---z/XPF
OPTION

A slip command will be issued with action=strace during

the profile data capture session the first time the capture
logic determines that load module XDC is active within
the private area of the profile target address space.

You have requested SUCCESSFUL BRANCH trace records
for csect DBCHMSGBL within the above named load module.

This slip command will be deleted when the profile data capture
session terminates.

The slip command will not take effect if another per type
slip is currently active when the command is issued.

Reply with "YES" to continue.

Depress the Enter key to add this slip information to request.

PF3/END TO RETURN TO PREVIOUS WITHOUT ADDING THIS
SLIP COMHMAND TO THE REQUESTED CAPTURE SESSION.

Figure 1-5-5.

If the information is correct, enter YES into the field, and press the Enter key. If, when the
Enter key is pressed, any value other than YES is in the field, then the SLIP processing will
not be done. PF3/END can also be used to return to the previous panel.

z/XPF’s interaction with SLIP processing takes a very powerful debugging tool previously
available only/mostly to Systems Programmers, and makes it available to anyone with access
to zZ/XPF. Use of SLIP/PER can be costly in system resources, so make sure that this is what
you really intend to do.

z/XPF’s SLIP/PER facility is also discussed in the z/XPF Installation Guide.

13
1-6 Adding Text/Comments To A Data Capture Request

It is a very good idea to get into the habit of adding comments to a capture request. The
capture dataset name will have a date, time, and address space name as part of the dataset
name, and that alone may be sufficient for your purposes. However, at some point in the
tuning process, it may be necessary for someone other than the original requestor to have
access to report data contained in the dataset. That’s when the use of comments may
reward you and your team.

Figure 1-6-1 below shows the panel with the YES variable filled in:

-=-=-z/XPF
OPTION
Start a data capture session for an active Address Space

Job/Task name or TSO userid. A "?" in position 1 of the field
will display a table of active address spaces.

Address Space id. Necessary if more than one address
space with same name.

Profile capture session duration. "HHHMM" format.

Blanks/nulls indicates length of the jobstep.

Max record count. Default is 500k. Specify as
nnnK or nnnM.
Get EXCP count interval(in seconds).

Ignhore non-private area psw’'s. (YES/NO)

Use slip processing to add PER interrupt data
to capture dataset. (YES/NO)

Add identifying text to capture dataset{(YES/NOD)

Figure 1-6-1.

If one chooses to add commentary to a data capture dataset (as in Figure 1-10), then z/XPF
displays the panel below, in Figure 1-6-3:

---=z/%XPF

Add Text Comments

Entered In The Input Fields On This Panel Are S5aved In The
ile Capture Dataset.

is where you may enter text that will be included in the
ture dataset. You could use this te remind yoursel f
you were trying to understand

some

Depress Enter Key Teo Add Comments

PF3/END To Return To Previocous Panel

Figure 1-6-3.

14 | z/XPF User's Guide

1-7 Future Start-By-Jobname

When you specify Option 2 on the panel entitled, “SCHEDULE A PROFILE CAPTURE
SESSION?” (Figure 20), you will see the panel displayed as Figure 1-7-1 below:

-~ =7/ XPF

Schedule a =sess=sion to start when the address space
becomes active.

JobsTask name. T=o userid.

Procstep.Stepname. Procstep iz the name on the
S/7HAME EXEC PROC=. Stepname is the name on the
S/HNAME EXEC PGHM=. Use Stepname only to match on the 1ist
Step in the job with that name.

Profile capture session duration. "HHMM'" Fformat.

Blankssnulls indicates length of the jobstep.
Continuous data capture (YES-/NO)

Max record count. Default is S00k. Specifu as
nnnk or nnnM.

Use =lip processing to add PER interrupt data
to capture dataset. (YES-/NO)

Add identifuying text to capture dataset (YES/NO)
PF3END TO RETURH TO PREVIOUS

Figure 1-7-1.

Use this panel to create a data capture request for an address space that will become active
at some point in the future. If the JCL contains multiple steps, and the step to be captured is
not the first step, enter the jobstep name as well. Entries must conform to standard Job/Task
and jobstep naming criteria.

Entering the parameters for Future Start-by-Jobname is identical to the procedure in
‘Immediate Start”.

[z/XPF utilizes z/OS SMF exit IEFUSI to notify z/ZXPF’s server address space of job and
step initiation. If a start-by-jobname request is in the queue but does not move from
that queue to active when the named address space starts, then the IEFUSI exit is not
getting control. This can occur when the z/OS parmlib definitions used to define SMF
exit processing do not specify an IEFUSI exit point for the type of address space named
in the start-by-jobname request. If this happens, then the ZXPFLOG dataset will contain
messages from z/XPF initialization that describe the exit points where the IEFUSI exit
was dynamically installed using the dynamic exits facility. Consult with your installation’s
System Programming staff to rectify this situation.]

1-8 Future Start by Date and Time-of-Day

Option 3 from the SCHEDULE A PROFILE CAPTURE SESSION panel presents you with a
panel entitled, “START BY TIME DATA CAPTURE. This panel is used to place a request into
the start-by-time queue. Entries are placed in this queue in start time order, the entry with
the earliest start time at the head of the queue.

At the designated time, the entry at the top of the queue is removed from the queue, and the
z/OS system is searched for an active address space that matches the request. If found,
data capture is initiated for that address space. If not found, a message is logged in the
ZXPFLOG dataset, and the entry is discarded. Figure 1-8-1 below shows the start-by-time
panel:

e T START BY TIME DATA CAPTURE

OPTION =
Schedule a session to start at a future daterstime.

JobsTask name. Tso userid.

Procstep.S5tepname. Procstep is the name on the
S/HAME EXEC PROC=. Stepname is the name on the
#//NAME EXEC PGM=. Use Stepname only to match on the step

the job with that name, at the specified start time.
ASID. Mecessary if more than one Address Space
with same name i=s active.

Start date. "MMDDYYYY" format.
Start time. "HHMM" format. 24 hr. clock.

Profile capture session duration. "HHMHM'" Fformat.
Blanks/ nulls indicates length of the jobstep.

Max record count. Default is 500k. Specify as
nmnkK or nnnM.

Uze =lip processing to add PER interrupt data

to capture dataset. (YES/HO)

Add identifying text to capture dataset (YES-NO)
PF3END TO RETURH TO PREVIOUS

Figure 1-8-1.

You can specify Job/Task name, Procstep.Stepname, the Address Space identifier, date/time
values and other variables from the other start menus. After you have reviewed your choices
here, depress the Enter key.

16 | z/XPF User's Guide

1-9 About ZXPFLOG

z/XPF keeps track of its actions in the ZXPFLOG dataset. This dataset is allocated as a JES
SYSOUT dataset, and the DD statement used is “ZXPFLOG”. It can be found in z/XPF’s started
task JCL.

The ZXPFLOG is a very good resource, for everything that z/XPF encounters normally ends up
as a line (or more) in the log. You can use the ZXPFLOG log to verify what’s going on, and it can
be a valuable resource for users AND for us, your support people.

If you experience unusual results or problems, then please retain the ZXPFLOG dataset from
you z/XPF session so that we can use it for problem determination.

An example of the ZXPFLOG appears below, in Figure 1-9-1:

———z/XPF

Schedule a gessinn to s=tart when the address space
becomes active.

xdexall JobsTazsk name. T=o u=serid.
Procstep.Stepname. Procstep iz the name on the
S/NAME EXEC PROC=. Stepname iIs the name on the
SNAME EXEC PGHM=. Use Stepname only to match on the ist
Step in the job with that name.

Profile capture session duration. "HHMHM" Format.

Blankssnulls indicates length of the job=step.
Continuous data capture (YES-/NO)

Max record count. Default i=s 500k. Specify as
nnnkK or nnnM.

Use =lip processing to add PER interrupt data
to capture dataset. (YES/HO)

Add identifying text to capture dataset (YES/HO)
PF3/ZEND TO RETURN TO PREVIOUS

Figure 1-9-1.

DUKESOFTWARE. | 17

Chapter 2 - Working With z/XPF Request Queues

Option 2 from the Primary Option Panel provides a mechanism for the user to manipulate the
z/XPF request queues. Entries in the start-by-job and start-by-time queues can be viewed or
deleted. An active data capture session may also be terminated.

2-1 Stop an Active Data Capture

When Option 2 from the primary panel is selected, the user is presented with a panel entitled,
“‘DISPLAY OR CANCEL SESSION QUEUES”. Refer to Figure 2-1-1 below.

DISPLAY OR CANCEL SESSION QUEUES

ENTER VALUE TO PROCEED

Display/Stop ACTIVE data capture sessions.

Display/Cancel 5 s ion r sts start by JOBNAME queue.

Display/Cancel 5 s i o ~ U s ts i start by TIME queue.

PF3/END to return tec previous panel

Figure 2-1-1.

The next three Figures depict the sequence for stopping/terminating an active data capture
session. When Option 1 is selected from the panel in Figure 2-1-1. you will see a panel
similar to the one below, in Figure 2-1-2. In this example, only one data capture session is
active.

---z/XPF
OPTION SCROLL ===> PAGE

Active profile data capture sessions. Use char "P" in stop
column to stop an active session.

PF3/END TO EXIT
STOP ADDR SPC ADDR SPC START START SESSION EVENT
NAME ASID DATE TIME DURATION COUNT
HH . MM
BOB 004F 03/07/2013 09.46.00 STEP 978
ok o ok K ok ok oK K ok K KOk Kk kKoK KoK KoKOIOR Kok kokokkok Bottom of data skokokokokok ko ok ok ok ok ok ok ok K ok ok K ok ok K ok ik 5K oK oK ok K ok XK

Figure 2-1-2.

18 | z/XPF User's Guide
Figure 2-1-3 shows the panel with the character “P ” in the STOP column, prior to the Enter
key being depressed.

- --z/XPF
OPTION SCROLL ===> PAGE

Active profile data capture sessions. Use char "P" in stop
column to stop an active session.

PF3/END TO EXIT
STOP ADDR SPC ADDR SPC START START SESSION EVENT
NAME ASID DATE TIME DURATION COUNT
HH. MM
P BOB 004F 03/07/2013 09.46.00 STEP 978

2k 2k K ok 2k K K K K K KK K KOK KKK KKKk kokkkokkkkk Bottom of data skokokokokskokkokkkok ok kK K ik & % X ik K kK % 5k ok % ok Xk % kK

Figure 2-1-3.

Figure 2-1-4 shows the panel after the active data capture session has been terminated. You
can see the “STOP SUCCESSFUL” message in the upper right portion of the screen as well
as ““STOPPED” where the address space name was previously displayed

---z/XPF STOP SUCCESSFUL
OPTION] SCROLL ===> PAGE

Active profile data capture sessions. Use char "P" in stop
column to stop an active session.

PF3/END TO EXIT
STOP ADDR SPC ADDR SPC START START SESSION EVENT
NAME ASID DATE TIME DURATION COUNT
HH. MM
*STOPPED 004F 03/07/2013 09.46.00 STEP 978
340k 3K K KK KOK K 30OK KKK ROKOKROKICKIOR KoK K0k k0k Bottom of data skokokokoskok ok kok ok K sk ok 0K 30K 3 KOk 0K 5k Ok ok 0k % K kK

Figure 2-1-4.

2-2 Display Requests In Start-By-Jobname Queue

When Option 2 is selected from the panel entitled, “DISPLAY OR CANCEL SESSION
QUEUES” (see Figure 2-1-1), and when you select Option 2 AND when there are one or
more requests in the start-by-jobname queue, the panel entitled, “START-BY-JOB SESSION
DISPLAY” is displayed. Refer to figure 2-2-1 below:

---z/XPF START-BY-JOB SESSION DISPLAY

oPTION ===> N SCROLL ===> PAGE

Start-By-Job data capture sessions. Use char "D" in delete
column to remove an entry from the queue.

PF3/END TO EXIT

DELETE JOB NAME STEP ADD-TO-0 ADD-Q SESSION USERID
NAME DATE TIME DURATION
MM/DD/YYYY
XDCSYMED 03/07/2013 11.40 STEP BOB

2k 2k K K 2k K K K K K K K K KK KKK KoKk okkokkkkkkkk Bottom of data skokokokokskokkokkokok ok kK K ik & i X ik 5K K & 5k ok k ok Xk k kK

Figure 2-2-1.

DUKESOFTWARE. | 19

Enter a“D” next to any job to stop the data capture. You can see the “DELETE SUCCESSFUL”
message in the upper right portion of the screen as well as the “*DLT’'D” message next to the

cancelled job-step.

-— -z /XPF DELETE SUCCESSFUL
OPTION [SCROLL ===> PAGE

Start-By-Job data capture sessions. Use char "D" in delete
column to remove an entry from the queue.

PF3/END TO EXIT
DELETE JOB NAME STEP ADD-TO-0Q ADD-Q SESSION USERID
NAME DATE TIME DURATION
MM/DD/YYYY
_ *DLT'D =% 03/07/2013 11.40 STEP BOB
340k 3K K KK OK K 30K KKK ROKOKROKICKIOR KKK K0k k0k Bottom of data okokokokoskok ok kok ok K sk K KK 30K 3 KK 350K 5K 3K Ok ok 0K o K kK

Figure 2-2-2.

2-3 Display/Cancel Session Requests In Start-By-Time Queue

When Option 3 is selected from the panel entitled, “DISPLAY OR CANCEL SESSION
QUEUES?” (see Figure 2-1), and when there are one or more requests in the start-by-time
queue, the panel entitled, “START-BY-TIME SESSION DISPLAY” is displayed. Again, put a
“‘D” next to the data capture you want to stop. Refer to figure 2-3-1 below:

- --z/XPF
OPTION [| SCROLL ===> PAGE

Start-By-Time data capture sessions. Use char "D" in delete
column to remove an entry from the queue.

PF3/END TO EXIT
DELETE ADDR SPC STEP ADDR SPC START START SESSION USERID
NAME NAME ASID DATE TIME DURATION
_ JES2 0000 03/15/2013 23.00 STEP BOB
ok 3K ok 3 K ok K ok ok K ok K Kok Kk kok kokok kokokkokkkokkk Bottom of data skokokokskokokksk ok kok sk sk ok ok 3k sk % ok ok % ok 3 % ok % ok 3 % kK

Figure 2-3-1.

Figure 2-3-2 below shows the display function, after the second entry in the list has been
deleted:

---z/XPF DELETE SUCCESSFUL
OPTION R SCROLL ===> PAGE

Start-By-Time data capture sessions. Use char "D" delete
column to remove an entry from the queue.

PF3/END TO EXIT

DELETE ADDR SPC STEP ADDR SPC START START SESSION USERID
NAME NAME ASID DATE TIME DURATION
i *DLT'D = 0000 03/15/2013 23.00 STEP BOB
KK KKK KKK KKK KKK KK KKKKKKKRKKKRKkkkk Bottom of data kkokkkkkok Kk kK ok Kk KKK kKK Kk kK Kk K kKK KX

Figure 2-3-2.

20 | z/XPF User's Guide

Chapter 3 - z/XPF’s Control Statements

3-1 Input statements for z/XPF’s started task (the server
address space)

At installation time, the installing Systems Programmer will have made decisions about how
to configure and run z/XPF at your site. These global settings are communicated to z/XPF
through Control Statements contained in an INPUT DD dataset in the z/XPF Server’s JCL.
z/XPF scans this dataset whenever its server address space is started.

It's possible to run z/XPF with only one control statement (the “LC=xxxxxx” card which activates
the product). All other control statements are optional. However, as your understanding and
use of z/XPF progresses, you may wish to insert or modify Control Statements to change
how it interacts with your environment.

Wherever there is a default value for a Control Statement, that value will be underlined in this
book.

Note that it is possible to run multiple instances of z/XPF. In the unlikely event that this
becomes desirable, the SSNAME Control Statement must be used, and must be uniquely
named from other instances of z/XPF.

3-2 z/XPF Control Statements Explained

L C=XXXX-XXXX-XXXX-XXXX

Where the parameter “xXxxx-xxxx-xxxx-xxxx” is a 20-character activation code supplied
by Duke Software. This control statement is mandatory. z/XPF will not initialize
without it.

When a new trial of z/XPF is requested, a start and end date is negotiated by management
at the installing customer site. When z/XPF has been installed and if the current date is
before the formal start date of the trial, z/XPF will run, but with a limitation on the number of
events it will capture for any data capture job. This is so the installing Systems Programmer
can verity z/XPF’s proper installation. When the formal start date arrives, then z/XPF will
run without restriction.

That’s the most important control statement, so we put it first. The rest appear in alphabetic
order.

ALOCVOL=xxxxxx

Use this control statement to place profile data capture datasets on a specific volume.

DUKESOFTWARE. | 21

With this statement set, the dynamic allocation routine constructs the parameter list
requesting the allocation on this volume.

There is no default value. When specified, the parameter “xxxxxx” is any valid DASD
VOLSER within the installation.

If this control statement is not present, then the storage request will be satisfied using
whatever storage management rules are already in place.

ALOCUNIT=xxxxxxxx

If not present, ALOCUNIT defaults to the installation’s default unit type. If stated, this
control statement will direct allocation of data capture datasets to a specific unit or generic
unit type. ALOCUNIT accepts a 1 to 8-character string. No validity checking is done on
this character string.

DATA _CAPTURE_DSN_HLQ=xxXXXXXX

“Xxxxxxxx” specifies a one- to eight-character string to be used as the high level qualifier
on profile data capture datasets allocated by the started task. Any characters that are
valid for a dataset name may be used.

If this control statement is not present, then the high level qualifier defaults to the sub-
system name. At present, zZ/XPF will accept a maximum of eight characters for this value.
We will expand this limitation in future releases of z/XPF.

If the character string of “USERID” is entered as the parameter for this statement, then the
started task will allocate the capture dataset using the TSO USERID of the individual that
scheduled the profile capture request. If this choice is made, then the user must ensure
that the z/XPF started task has the authority to allocate and open for output datasets with
those userids.

To reduce administrative overhead, set this value, and then give individual users authority
to the datasets created by their profile capture requests.

DATA_CAPTURE_DS BUFFERS=nnn

This Control Statement establishes the number of buffers z/XPF uses during data capture.
If this control statement is not present, the default value is “15”. The higher the value, the
more virtual storage is used to hold the buffers, but the number of 1/0s executed to write
to this dataset is reduced. The use of this control statement is highly recommended.

If specified, the parameter “nnn” is a numeric value valid for the BUFND setting for an

22 | z/XPF User's Guide

ACB. The specified value is used with the profile data capture dataset. The block-size for
this dataset is 4K.

DB2=XXXX,SDSNLOAD=YYYYY.Z2Z2Z272777

This control statement is highly desirable for measuring DB2-related programs. XXXX is
a version identifier for a version of DB2 (The version identifier used to be a three character
value. For DB2 Release 10 and above, it is a four-character value). YYYY.ZZZZZ7Z is the
dataset name for that version’s SDSNLOAD Library. Below is an example of this control
statement for DB2 Version 8.1:

DB2=810, SDSNLOAD=DSN810.SDSNLOAD

The presence or absence of this control statement indicates to z/XPF that DB2 catalog
information for DBRMSs, Packages, and Plans should be acquired and added to the data
capture dataset. z/XPF will then use the Call Attach Facility to connect to the target DB2
system identified during data capture.

For each version of DB2 present on the target system one statement is needed. Multiple
DB2 systems at the same version level can share the same SDSNLOAD dataset.

For DBRMs bound into packages, DB2 catalog tables SYSIBM.SYSPACKAGE and
SYSIBM.SYSPACKDEP are queried for bind and dependency information, and SYSIBM.
SYSPACKSTMT is queried for SQL text. In order for z/XPF to access these catalog
tables, the DBRM shipped with z/XPF must be bound on the target DB2 system. Also,
z/XPF must be allowed to access the DBRM via installation security systems.

When a query of SYSIBM.SYSPACKAGE returns a “not found” condition for a DBRM,

catalog tables SYSIBM.SYSPLAN, SYSIBM.SYSPLANDEP, and SYSIBM.SYSSTMT are
accessed.

FORCE_VENDOR_TABLE=YES

This control statement will store z/XPF’s common area data block in the vendor table
anchor entry assigned by IBM for use by z/XPF. It is only to be used in circumstances
wherein (for some reason) z/XPF’s vendor table anchor slot has become corrupted
(meaning the slot contained non-zero values but also did not contain z/XPF’s data area).

INTERVAL_TOLERANCE_PERCENTAGE=nn

The parameter “nn” is a percentage value. The default value is 10 percent.

DUKESOFTWARE. | 23

In a heavily loaded environment it is important to verify that z/XPF is capturing ALL the
data available, without lapses. The INTERVAL _TOLERANCE_PERCENTAGE is used to
compute whether z/XPF is getting control often enough.

The “Interval Rate” is the number of times per second that z/XPF gets control of the
processor to scan trace records. The Interval Tolerance Value of “nn” is used as a
percentage to calculate whether the achieved interval rate is within range of a “desired”
interval rate.

[For example, on our development system, we may expect to get fifty “intervals” per
second, and at the end of ten seconds, we’'d expect to see a total of 500 intervals.
However, we may not be able to achieve exactly that number of intervals, so a ten percent
“tolerance” value would be used. If the Interval Rate fell below 450 in ten seconds (90%
of the “desired” Interval Rate) z/XPF would begin to generate messages.]

Put in other words, if the achieved Interval Rate is greater than the desired Interval Rate
minus the tolerance value then all is well.

After the first ten seconds of execution, z/XPF compares the achieved Interval Rate with
the actual Interval Rate and computes it against the Interval Tolerance percentage. If all
is well, zZ/XPF checks again twenty seconds later. If all is still well, zXPF checks again
thirty seconds later. If an exception is seen, z/XPF will generate messages to the session
log and the 10-20-30-second monitor cycle will begin again.

MAP_LMOD_DURING_CAPTURE=YES/NO

z/XPF normally performs mapping functions DURING data capture. This causes the
z/XPF server address space to allocate and open datasets that reside in Joblib/Steplib
and Linklist as input to the Binder. This may cause a security problem for the z/XPF
Server Address space. If so, you can turn off this behavior by adding the above Control
Statement with a parameter of “NO” to turn mapping off during data capture. Mapping
can then be done later, during the report generation phase.

If this control statement is not present, then the default value of the parameter is “YES”.

MAPLPA=NO

By default, z/XPF will attempt to map modules in the Link Pack Area (LPA) in order to
create BInder Maps. Depending on the number of modules in the LPA, this process can
take several minutes and consume a large amount of the CPU. This defaul action can
be over-ridden by includeing the MAPLPA=NO control statement in z/XPF’s startup deck.

24 | z/XPF User's Guide

MAP_LPAMOD=xxxxxxxx,DSN=yyyyy

Use this control statement to inform z/XPF of the location of LPA resident Load Modules that
are not mapped during z/XPF’s normal initialization. z/XPF will thereafter use this information
when calling the Binder to create Csect maps for the named Load Module.

In this control statement, xxxxxxxx should contain the Load Module name, and yyyy the
dataset name to be used for the Binder dialogue.

You may define no more than 100 MAP_LPAMOD statements to z/XPF.

z/XPF'’s initialization logic uses the LPAT table, mapped by Dsect IHALPAT as the source for
the calls to the Binder. When the mapping logic has processed the last dataset in the LPAT,
and there are LPA resident modules not yet mapped, message XPFOOOE-03 is written to the
ZXPFLOG for each Load Module not yet mapped. These modules could be “candidates” for
this special mapping function. If you wish to have z/XPF map these modules, add a MAP_
LPAMOD control statement for each module.

MAX_MSG_DURING_CAPTURE=1000/NNNNNN

This parameter sets an upper limit on the number of messages generated by z/XPF’s
server address space. It prevents z/XPF’s data capture from writing redundant messages
to the z/XPF log. If this number is exceeded, then z/XPF may be in a loop, and all active
data capture sessions are stopped.

If this control statement is not present, the default value of the parameter is “1000”. This
can be set to any value desired up to 999999. It may be overridden by keying in all zeros,
thusly: “000000” In that situation, there will be no limit on the number of messages
logged.

NBR_COPYCYCLES_PER_SECOND=50/nnn

The parameter “nnn” is used to compute the target for the number of times per second
z/XPF will scan for events. At the beginning of each interval, z/XPF notes the time the
interval started. When all of the interval processing is completed, the start time for the
next interval is computed, and the current time is subtracted from the next interval start
time, to give the pause time.

If this control statement is not present, the defaults value is “50”. If specified, “hnn” is any
value between 1 and 100.

If events occur that z/XPF doesn’t seem to capture, then it is possible that this parameter

DUKESOFTWARE. | 25
has been set to a value that is too low.

PR_BUFFERS=nnn

In order to minimize “wrapping” of system Trace Buffers (and subsequent data loss by
z/XPF), z/XPF can adjust the number of processor Trace Buffers by executing the “TRACE
ST” Operator command during z/XPF’s initialization. The larger the Trace Buffers, the
greater the chance that z/XPF will be able to keep up with execution in very fast-throughput
environments.

z/XPF will enter the commands thusly: “TRACE ST,nM”

For z/OS V1R10 and above, the system default is 256 4K buffers for a trace table of 1
megabyte. In these systems, z/XPF will set the processor trace table to 512 buffers per
processor, for a trace table of 2 megabytes. The maximum value z/XPF will accept on
this statement is 1280, or 5 megabytes per processor. Any value greater than that will be
set to 1280. Any value less than 256 will be set to 256. Any value entered in the control
statement that is less than the currently set amount will be ignored.

PR_BUFFERS=ASIS

If this statement is present, z/XPF will not adjust the trace table size. Be advised that this
may prevent z/XPF from capturing all of the trace records it needs in order to do its job.

RACF_PROFILE="hIg’

If specified, the parameter “hlq” is the High Level Qualifier for a set of RACF security
profiles. If unspecified, the value is a default of “ZXPF”.

Later, during initialization, a RACROUTE is executed to create a list inside the z/XPF
address space of the profiles that are relevant to z/XPF.

When a request is to be added to one of the queues, a RACROUTE authorization check is
made. The entity used for the check will use the parameter given in the RACF_PROFILE
statement.

Potential issue: As long as a user does not specify a RACF_PROFILE= statement in
any instance of z/XPF, or specifies the same value in all instances, all is well. HOWEVER,
if one instance of z/XPF specifies a RACF_PROFILE statement, and then the installation
starts another instance of z/XPF, but DOES NOT specify the same high level qualifier for
that instance, then that instance of z/XPF will run un-protected.

The easiest course of action is to take the default, or specify the same value in the RACF _
PROFILE= statement on all instances of z/XPF.

26 | z/XPF User's Guide

RESET_SRVCLASS=XXXXXX

If this statement is used, it will cause z/XPF to issue an Operator RESET command to
set z/XPF’s service class to the named service class. The default value for z/XPF is
“SYSSTC”.

RESTARTDSN=dsname

If specified, the parameter “dsname” is the name of a dataset. This dataset is used to
hold profile requests in the z/XPF started task queues when the z/XPF server terminates.
During start-up it is allocated and read. All requests in the start-by-jobname queue are
restored. Any request in the start-by-time queue that has not expired is restored.

If the RESTARTDSN statement is used, then the parameter “DSNAME” dynamically
allocates a dataset of that name (if it is not already present when the task initiates) as a
physical sequential, fixed block file, with a block-size of 9600. It is a one-track dataset,
with a one-track secondary allocation.

SLIP_ COMMANDS=YES/NO
If this control statement is not present, the default value of the parameter is “NO”.

Specify “YES” to allow profile data capture sessions to include SLIP PER interrupts.
z/OS allows only one SLIP of this type to be active at a time.

When an active profile capture session contains a request for SLIP records, z/XPF
compares the identified load modules in the target profile address space to the load
module name in the user’s request. When a match occurs, a SLIP command is created
and sent to z/OS via MGCRE (SVC 34) if zZXPF does not already have a SLIP active at
that time for another profile session.

When the profile data capture session terminates, z/XPF checks to see if a SLIP was
issued. If it was, it constructs another command to terminate SLIP processing, and
submits that to z/OS again using MGCRE.

SLIP_ID=xxxx

If this control statement is not present, z/XPF will default to using the sub-system name
given in the SSNAME statement. Specify any set of one- to four-characters that are valid
for the ID used in a SLIP command. Note: this ID should be unique among SLIP IDs used
in the installation. That is, pick a SLIP ID that will ONLY be used by z/XPF.

DUKESOFTWARE. | 27
SSNAME=ZXPF/xxxx

The value specified here is used as the z/XPF sub-system name. If this control statement
is not present, the default value is “ZXPF”.

Many instances of z/XPF may run concurrently, but each must be uniquely named. If
specified, the parameter “xxxx” can be any one- to four-character name.

SSCLEAR=YES/NO
If this control statement is not present, the default value for the parameter is “NO”.

Use this statement with caution. If stated, this statement will cause z/XPF to clear the
Subsystem Control Table for a previous instance of z/XPF with the same name as given
in the SSNAME parameter. This is useful in situations where a previous instance of
z/XPF has terminated abnormally.

If there is NOT another z/XPF server address space active using the name specified by
the SSNAME control statement, then setting this to YES cannot do any harm. HOWEVER,
when another z/XPF server address space is active and is using the same SSNAME
parameter, using SSCLEAR=YES will cause errors within the other active server address
space.

USER_TRACE_NBR=0-F
If this control statement is not present, the default value of the parameter is “F”.

This control statement is used in conjunction with the ZXPTRAC “User Trace” feature.
ZXPFTRAC allows you to create your own “Trace Records” that are written to system
Trace Buffers and later reported on by z/XPF. The feature allows you to signal events in
complex code flows,

For example, you could execute a ZXPFTRAC with TYPE=BEGIN into your code prior to
scheduling itto run on a zIIP processor, and then execute a ZXPFTRAC with a TYPE=END
once the code is running on the zIlIP processor. In this way, you can measure the amount
of system overhead it takes to get your code ported over to the zlIP processor.

WRITE_TO LOGREC=YES

This control statement is a diagnostic tool for special circumstances. It is used to force
the writing of log records when trouble-shooting z/XPF’s SRB-based data capture logic.
Specify this control statement only at the direction of z/XPF’s Technical Support personnel.

28 | z/XPF User's Guide

Chapter 4: z/XPF’s Auxiliary Macros

4-1 ZXPFTRAC — z/XPF’s “User Trace” Function

The z/XPF install library &HLQ.INSTALL.JCL contains a member named ZXPFTRAC. The
ZXPFTRAC member in this library is a macro that, when assembled into and executed within
a user application, causes a Trace Record to be written to the system Trace table.

ZXPFTRAC is a way for z/XPF customers to create their own “Trace records” in order to
signal various events in their applications. So, one could use the “TEXT=" operand to send
a “HELLO WORLD” message to the Trace table (and thereafter see it in z/XPF’s Detail
reports). One could also use the “BEGIN” and “END” operands to measure the elapsed time
for execution between any two places in a program.

ZXPFTRAC can be executed in any environment: TCB-mode, SRB-mode, Authorized,
unauthorized, PASN=HASN, or PASN not equal HASN — any environment that your code
can execute in - with the exception of a TIMER DIE exit.

For example, you could execute a ZXPFTRAC with TYPE=BEGIN into your code prior to
scheduling it to run on a zlIP processor, and then execute a ZXPFTRAC with a TYPE=END
once the code is running on the zIIP processor. In this way, you can measure the amount of
system overhead it takes to get your code ported over to the zIIP processor.

ZXPFTRAC will only work when the z/XPF Server is active and will have no effect during un-
monitored program execution.

Currently, ZXPFTRAC-generated Trace Records will only appear in z/XPF’s Detail reporting,
NOT in Summary reporting.

[Note: If more than one z/XPF Server address space is active, then the ZXPFTRAC macro
will work ONLY on that first instance of the z/XPF server address space.]

4-2 How to use ZXPFTRAC

To assemble correctly, the application source will need to contain:
1. Register equates for R1, R14 and R15;

2. CVT dsect (CVT DSECT=YES, LIST=YES);

3. ECVT dsect (IAHECVT LIST=YES).

Copy the macro from the &HLQ.INSTALL.JCL library to a macro library on your system.

DUKESOFTWARE. | 29
The macro has two operands: “TYPE=" and “TEXT=".

+ Use TYPE=BEGIN to signal the beginning of a process.

« Use TYPE=END to signal the end of a process.

+ Use TEXT='<string>’ will accept any text stream coded within single quotes.

* YouMUST use both TYPE=and TEXT=operands within asingle occurrence of ZXPFTRAC.

ZXPFTRAC executes a space switch Program Call (The logic for the PC resides within the
z/XPF server, and is extremely short). When the ZXPFTRAC macro is executed, a user
Trace Record is written to the system Trace Table using PTRACE. This user Trace Record
is picked up from the Trace Table and is included in the capture dataset.

The overhead involved in using this functionality is as follows:

» Space Switch Program Call.

+ CPOOL GET to acquire a cell from a pool.
» ESTAEX to protect the function.

+ PTRACE.

« ESTAEX to remove the estae

+ CPOOL FREE

* Program Return to return to the application

The user trace number used on the PTRACE call is a default of X'’F’ (decimal 15). You may
alter this value by using a z/XPF input control statement of:

USER_TRACE_NBR=[0-F] (where “F” is the z/XPF default value).

Note that the logic in the macro checks z/XPF control blocks to insure that the z/XPF server
address space is active, so no harm should come from executing the code if the server is not
currently active. However, it is recommended that the execution of the ZXPFTRAC code be
controlled within the user’s application by some form of user flag setting.

4-3 Understanding the output of ZXPFTRAC

» ZXPFTRAC's results appear only in z/ZXPF’s Detail Reports (not in Summary reports).

* There is a new INCLUDE filter for ZXPFTRAC in z/XPF’s Detail Reports. If you use this
filter then your Detail report will contain only your ZXPFTRAC records. Now, they’ll be
isolated!

Here is an example taken from the test-bed application we used to verify z/XPF’s accuracy:

CPU=00, TIME RECORDED=11.02.16:53.8350, RECNUM=46425/015C,CMPT’D, PSW ID’D
EVENT=USR TRC OF7F, TIME=11.02.16:50.7364, TYPE=BEGIN TRACE

PASN=0028, HASN=0028, PSW=07852000800000000000000000007E58, LOC=PRV AREA
KEY=8, STATE=PROB, ASC=PRIM, MODE=31, INSTR ADDR=00007E58

LM=APIVPZRO, OFFSET=000009C8

CSECT=APIVP,OFFSET=000009C8

30 | z/XPF User's Guide

WORK UNIT=APIVPZRO, TOKEN=000000A00000000100000044008E66DO0
TEXT=BRACKET GETMAIN/STORAGE FUNCTIONS

CPU=00, TIME RECORDED=11.02.16:53.8439, RECNUM=46450/015C,CMPT’D, PSW ID’D
EVENT=USR TRC OF7F, TIME=11.02.16:50.7771, TYPE=END TRACE

PASN=0028, HASN=0028, PSW=07852000800000000000000000008256, LOC=PRV AREA
KEY=8, STATE=PROB, ASC=PRIM, MODE=31, INSTR ADDR=00008256

LM=APIVPZRO, OFFSET=00000DC6

CSECT=APIVP, OFFSET=00000DC6

WORK UNIT=APIVPZRO, TOKEN=000000A00000000100000044008E66DO0O

TEXT=BRACKET GETMAIN/STORAGE FUNCTIONS
Explanation:

* In both paragraphs, note the character string “EVENT=USR TRC OF7F” in the second
record.

* The TIME= value is taken from the user trace record created by the PTRACE call.
Note the time-stamp.

* Note the PSW address. This is the location in the application program where the
ZXPFTRAC was executed.

» Finally notice the TYPE= in the second record line of the formatted trace entry. This field
contains the value from the TYPE=BEGIN execution of the macro in csect APIVP, at
offset 9C8. The entry for TYPE=END appears at offset DC6 in the second paragraph.

» Thelastline of data for the event is the content of the TEXT= coded on the ZXPFTRAC.

DUKESOFTWARE. | 31

4-4 ZXPFDYNL - Tracking the “Life-span” of modules loaded
by Directed Loads

Load Modules that are loaded by a Directed Load do not add entries to the application CDE
chain. And, obviously, executable code that is generated while the application is executing
is not known to any z/OS function or service, and therefore these routines also do not have
CDE chain entries.

z/XPF’s data capture logic now has the ability to identify Load Modules that are loaded via a
Directed Load. z/XPF can handle two distinct types of Load Modules:

« Type 1. Astandard s/OS Load Module or Program Obiject .

« Type 2. ALoad Module that is “generated code” This is executable code that is built by
the application logic while the application is executing, and is moved to a virtual storage
location.

To give z/XPF the ability to report on these Load Modules, it is necessary to give the target
application the ability to communicate with the z/XPF server. That communication is in the
form of a Program Call from the application to the server. The Program Call will be added to
the application’s logic by incorporating a z/XPF supplied macro named “ ZXPFDYNL”.

Once you have used the ZXPFDYNL macro, then the modules you identify to z/XPF will
appear in both Summary and Detail reporting. At that point they’re “just another module” to
z/XPF, and you’ll be able to gather statistics on them just as you do with “normally loaded”
modules.

[Note: If more than one z/XPF Server address space is active, then the ZXPFDYNL macro
will work ONLY on that first instance of the z/XPF server address space.]

4-5 ZXPFDYNL macro specifications.
The macro has one optional keyword, and that keyword will have two possible values:

« ZXPFDYNL TYPE=TEST.
« TYPE =TEST will execute logic to determine if the z/XPF server is active on the z/OS
image. R15 will contain a return code for this invocation of the macro.
» If Register 15 = 0’s, then the z/XPF server address space is active, and is capturing
data for this process.
« If R15 =4, then the z/XPF server is active, but is not capturing data for this process.
« If R15is > 4, then the z/XPF server is not currently active.

« ZXPFDYNL TYPE=GENERATE
TYPE=GENERATE will define the data fields needed by the application to communicate
the loading and deletion of these dynamically loaded modules. The data fields are:

32

| z/XPF User’s Guide

ZXPFDNAM DS CL8 Name of the Load Module

ZXPFDADR DS XL8 Virtual Storage address of module load point.
ZXPFDLEN DS XL4 Length of Load Module

ZXPFDTOD DS XL8 STCK/(clock) value when a module is loaded/deleted
ZXPFDTYP DS CL1 Action indicator.

* Value = “L” to indicate a load

* Value = “D” to indicate a delete

* Value = “G” to indicate generated code

ZXPFDYNL without any keyword coded triggers the logic to place the address of the generated
ZXPFDNAM field in R1, and then execute the Program Call to the server address space.

The Program Call logic within the z/XPF server uses the home ASID value to determine if
data capture is active for the address space executing the Program Call. If not active, the
logic will immediately return, and R15 on the return will contain 0’s. No indication will be
given to the caller that the call was not successful.

When the ZXPFDTYP field is either “L” or “G”, z/XPF’s internal data structures are updated
to reflect the contents of the other fields passed on the call.

When the type field is “L” (indicating a load operation), the Binder is called to get a Csect
map for the Load Module, using the target application’s Joblib/Steplib and current Link list
datasets.

No attempt to get a Binder map for Load Modules with a type of “G” is be made, because it
is not possible to obtain mapping data for generated code.

When the ZXPFDTYP value is “D” the server logic removes the previously identified Load
Module from its current, active target application Load Module identification data structures,
and places this entry in the non-active chain. Note that each execution of ZXPFDYNL to
identify a load and a delete of a Load Module causes the server to update its data structures.

It is possible to track the same Load Module loaded at different times and/or virtual storage
locations.

When/if the target application executes two successive calls with a type of “L” for the same
virtual storage location, the 2nd call will cause an implicit delete for the previously defined
Load Module.

To allow the user to verify the information contained within the ZXPFDYNL data structures,
the z/XPF server logs the contents and type of call to the ZXPFLOG dataset in the server
address space.

DUKESOFTWARE. | 33

ZXPFTRAC executes a space switch Program Call (The logic for the PC resides within the
z/XPF server, and is extremely short). When the ZXPFTRAC macro is executed, a user
Trace Record is written to the system Trace Table using PTRACE. This user Trace Record
is picked up from the Trace Table and is included in the capture dataset.

The overhead involved in using this functionality is as follows:

* Space Switch Program Call.

+ CPOOL GET to acquire a cell from a pool.
» ESTAEX to protect the function.

+ PTRACE.

« ESTAEX to remove the estae

+ CPOOL FREE

* Program Return to return to the application

The user trace number used on the PTRACE call is a default of X'’F’ (decimal 15). You may
alter this value by using a z/XPF input control statement of:

USER_TRACE_NBR=[0-F] (where “F” is the z/XPF default value).

Note that the logic in the macro checks z/XPF control blocks to insure that the z/XPF server
address space is active, so no harm should come from executing the code if the server is not
currently active. However, it is recommended that the execution of the ZXPFTRAC code be
controlled within the user’s application by some form of user flag setting.

34 | z/XPF User's Guide
4-6 Tracking the activity of the ZXPFDYNL Macro

Whenever the ZXPFDYNL macro is invoked, you will be able to see its activity in the ZXPFLOG
dataset. In our example two modules, “ZXPFTST1” and “ZXPFTST2” were reported on.
Below in Figure 4-6-1 you will see an example:
FOUMD
o active table. Load point 248 end addr

been deleted from ac tzble. [(DYNAMLOD

.36:14)
d complete o en added to tive table. Load point 2490C700, end addre
AMLOD, !
compl i i " ak 0 ed from ar
.46)
in rou IMPLPROF. Load module of t n code = [IMPLPROF, SRB4RT

Date capture will terminate. (Pl

p L ;
WAFPABLE s AP
14,15.6

Figure 4-6-1.

In the panel above you'll see Message XPFOOOF-02 showing, “ZXPFDYNL load complete”.
You can see that Load Module ZXPFTST! was loaded, it's load point and its ending address.
Next you can see Message XPFOOOF-01 showing, “ZXPFDYNL delete complete”. Later you
see the same pair of messages for ZXPFTST2.

DUKESOFTWARE. | 35

Chapter 5 - Creating Reports

OK. By this point you have created a data capture session, and z/XPF has captured events
in a VSAM database. Now it’s time for the reporting phase of your work with z/XPF.

During data capture, z/XPF captures Trace Records for the address-space-of-interest you
request, and filters out Trace Records that are irrelevant to your enquiry. Then, it saves the
data into VSAM datasets that you can query. Some of these report datasets can be VERY
large.

The two tools you’ll use are Summary Reporting, and Detail Reporting.

5-1 Summary Reporting vs. Detail Reporting

z/XPF offers two categories of reports: Summary reports, and Detail reports. This chapter
will cover z/XPF’s basic reporting concepts and Summary Reporting. A subsequent chapter
will discuss Detail reporting.

Summary reports contain information about program activity, Wait time, Contention, memory
management and the like right down to the PSW level. You merely put the cursor next to any
field that you care to see, and press Enter. z/XPF will either “drill down” into the next level
or will drill and expand, which is a way to drill down while changing categories. It’s probable
that you will be able to do most of your work using Summary reports.

z/XPF will allow you to see your source statements in Summary Reports. You'll find information
on how to do that further along in the book, towards the end of Chapter Five.

Detail reports go down to individual Trace Records themselves. If you’re using the ZXPFTRAC
facility (which allows you to create your own trace records), then Detail reporting is the ONLY
way to view them in z/XPF’s reports.

Detail reporting involves learning to use and employ “filters” that include/exclude extraneous
data in order to get to the information you need. The better you get at using filters, the quicker
you’ll get what you need with z/XPF’s Detail Reporting. The trick is to eliminate the potential
millions of data points that don’t matter to you in order to see what you DO need to see.

5-2 z/XPF’s Reporting Hierarchy

z/XPF'’s reporting hierarchy proceeds from the general to the specific, just as you might do in
your own investigative process. There are five “levels” to a z/XPF report.

1. The top level is the Time Segment. You can have one Time Segment that spans the
entire length of your data capture session, or you can divide as finely as you like down
to one-second Time Segments. Time Segments allow you to isolate the most active

36 | z/XPF User's Guide

portions of a data capture dataset.

The next level is the Work Unit. This is either a Task or an SRB.
Below the Work Unit level is the load module.

Below the load module is the csect.

The final level is the actual PSW offset within a csect.

arwDd

With z/XPF’s dynamic ISPF reporting you can navigate up and down through the hierarchy (A
“drill-down” operation) or drill-and-change-categories (a “drill and expand” operation).

5-3 z/XPF and Virtual Storage

z/XPF trades virtual storage usage for speed. It is impossible to predict the amount of virtual
storage that z/XPF will need to create its reports because the amount of virtual storage
required is dictated by the size of the dataset created during data capture.

With z/XPF V2R1 and above, both the z/XPF Server and the Report Generation functions
use virtual storage obtained above the 2-gigabyte “bar”. Therefore:

You MUST have enough space made available to your user’s TSO userids to process the
reports. If your users get storage ABENDs during the report phase in z/XPF, that’s an indicator
that they need more space. The ultimate fix is to define a region size of 2 gigabytes, which
means that z/XPF will get all it needs.

ISPF must be able to allocate storage above the bar. Just how much storage needed above
the bar depends on the number of Work Units and load modules that are reported on during
z/XPF’s data capture.

it is recommended that the installing Systems Programmer set the MEMLIMIT value in the
SMFPRMxx member to NOLIMIT.

z/XPF also expects to write to its ISPF log dataset. If no log dataset is allocated, then z/XPF
will not be able to log ISPF error messages, and diagnosis of z/XPF problems within ISPF
will be far more difficult

5-4 How z/XPF Maps Load Modules

“Mapping” allows z/XPF to match PSW-based Trace Records to specific csects and load
modules. That way, in zZ/XPF’s reports you can easily tell where your applications are
consuming system resources, which is a vital feature of the product. z/XPF does NOT map
to source code in any language - just to PSW within csect within load module.

Mapping is normally done during data capture, and at the end of data capture maps are written
into the data capture dataset. This is the system default. You can over-ride this function if
you care to by using the z/XPF Control Statement “MAP_LMOD_DURING_CAPTURE=NO”
where the system default is “YES”.

If your z/XPF is set not to map during data capture, you can influence this later. In this

DUKESOFTWARE. | 37

case you can ask z/XPF to perform the mapping function when you create your reports.
That choice becomes available to you at the panel entitled “ALLOCATE DATA CAPTURE
DATASET”. Enter “YES” in the field labeled, “Map load modules during allocation process.
(yes/no)”.

You can say “NO” to mapping at this juncture. If you do this, and maps WERE created during
data capture, then if they do exist, they’ll be ignored. | don’t know why anyone would make
this choice, but it's available to you.

5-5 Mapping “User-defined” Load Modules

z/XPF can also map “user-defined” load modules. These load modules do not possess
a CDE entry in the CDE chain. They’re loaded in other ways by clever programmers, but
z/XPF can still map them. The way to map “non-CDE” modules is to create a dataset that
specifies the name, location and length of the non-CDE load module(s).

The dataset contains records that follow this format:

The keyword “LMOD=", in columns 1-5.

The load module name starting in column 6, followed by a comma.

The virtual storage address where the load module is loaded, followed by a comma, and
The length of the load module, in hexadecimal format.

Once you have created this dataset, then in the allocation process you will enter “YES” to the
panel choice “Add non-CDE load modules info to capture dataset yes/no” (See Figure 5-1).
Then, z/XPF will direct you to another panel that will prompt you for the location of the dataset
containing the values you stated in the bullet points above.

Another useful tool in this area is the ZXPFDYNL macro, which allows you to gather statistics
on multiple instances of dynamically loaded modules that are (or are not) loaded to the same
address every time. See Chapter Four for more information on the ZXPFDYNL macro.

38 | z/XPF User's Guide

5-6 Allocating a dataset for reporting

Before you can begin reviewing z/XPF’s reports you must allocate the VSAM dataset that
was created when you performed your data capture. z/XPF can only report on one data
capture dataset at at time.

If z/XPF detects that no datasets are already allocated, it will automatically direct you to the
panel below, entitled “ALLOCATE DATA CAPTURE DATASET".

---z/XPF
OPTION ===>
Data capture dataset names have a format of:
"HLQ.ADDRSPACENAME .DATE . TIME . PROFL"

Generate a list of datasets to choose from using criteria

specified below. Use an “"x" as a wild card in any field.
Primary HLO. Defaults to tso userid if not specified.
Job/Task name/TS0O userid. This is the name of the address
space specified on the original request to capture data.
Date(format is DMMDDYY).
Time(format is THHHMMSS)

OR
Specify dataset name and press enter.

DS1 ==>

Map load modules during allocation process.(yes/no)

Add non-CDE load module info to capture dataset.(yes/no)

PF3/END TO EXIT

Figure 5-6-1.

Note, that if you ALREADY have a data capture dataset allocated, you will not see Figure
5-1. Instead you’ll be directed to the PRIMARY CREATE PROFILE MENU which appears in
Figure 5-3 below. From THAT panel, you may choose to FREE the data capture dataset you
already have allocated, and then select a new one from the screen depicted in Figure 5-1.

The panel in Figure 5-1 has two logical “partitions”. You can either press Enter to manipulate
the default/wildcard values for a z/XPF profile data set, OR you can specify a dataset name
directly in the lower portion of the panel (The “DS1 ==>" field). If you specify a name here,
then enclose the name in single quotation marks. You can’t use both portions of the panel.

The general naming convention for data capture datasets is “ZXPF.<jobname or TSO
userid>.D<MMDDYYYY>T<HHMMSS>.PROFL". “D<MMDDYYYY>"is a date field, and the
“T<HHMMSS>" field is the time of day, values which correspond to when the data capture
dataset was created.

In the next field (“Map load modules during allocation process.”), you can choose whether
you want mapping done or not. “Yes” is the system default, and is a good idea to leave it as
it is.

“Add non-CDE load module to capture dataset” is meant for the mapping of “user-defined”

DUKESOFTWARE. | 39

load modules. For more information on this, see “How to map modules that do not have a
CDE-entry” later in this chapter.

Once you have filled in the Allocation panel in Figure 5-6-2, you'll see the panel that appears
in Figure 5-2 below:

P s
names . e & raracter in the select column for the
then depr 4 he g ~ key. PF3/END exits panel without
alloecation.

PF3/END TO EXIT

SELECT HLQ Target Date Time

ZRXPF BOB 83/05/713 09.
ZXPF BOB 03/05/13 11.
ZXPF BOB B3/05/7/13 15.
ZXPF BOB B3/ 0’/13 B9. <
ZXPF BOB 85/16/13 09.
ZXPF BOB 85/16/13 10.
ZXPF BOB 05/16/13 10.
ZXPF BOB es/2a2/s13 i12.
i ZXPF BOB 13/03/04 13.56.45

Figure 5-6-2.

In the “DATASET DISPLAY” panel you'll see all the datasets that meet the naming criteria
you specified previously. To select one from the list, tab down next to the entry you wish,
enter an “S” and press the Enter key.

5-7 Beginning the Reporting Process

Once you have allocated your data capture dataset and pressed PF3 and you will see the
panel entitled, “PRIMARY CREATE PROFILE MENU". Refer to Figure 5-7-1 below:

2 XPF PRIMARY CREATE PROFILE MENU ---- DATASET ALLOCATED
OPTION
Enter Option
1) Select source capture dataset to use in report process.

Displag user comments in selected source capture datasets.

List library contents contained in selected capture dataset.
Free allocated source capture dataset.
Map load modules/s/display load module maps in selected source dataset.

View profile summary data. Summary statistics categorized by

Work Unit, Load Module, Csect, and P5SW offset. Include=s DB2
statistics if the target accessed a DB2 system.

Yiew profile summary data specifying Time Segments. Same reports as
option 6 above., but can =s=et Time Segments as small as one second.

Create a profile detail report. View event data by event type.

Create datasets for FTP process. Creates a compressed dataset to
be downloaded and used by z/XPF-PC.
Set report BrowsesView, dataset volser and unit type.

PF3/END to return to previous panel

Figure 5-7-1.
Here is an explanation of the choices available on this panel:

Option 1 allocates a dataset, if one is not currently allocated.

40 | z/XPF User's Guide

Option 2 will display the user text comments in the currently allocated capture dataset, if any
have been entered. If no comments exist, you'll see “NONE THIS DSN”.

Option 3 allows the user to list the contents of libraries used during the report generation
process. This panel allows you to learn which system libraries were accessed during your
data capture session.

Option 4 frees the currently allocated source capture dataset. z/XPF can report on only one
capture dataset at a time, so in order to create reports on another capture dataset you must
free the currently allocated one. Use Option 4 to see a display of the data capture dataset
you’re currently looking at. Put an “F” next to the dataset and press Enter. This frees the
capture dataset. Then, you may select another capture datset using Option 1.

Option 5 may be used to access Binder/link-edit maps to be used during the report generation
process. Modules that are already mapped display the dataset used as source for the map.
You can use “M” to map any un-mapped modules. You can use “D” to display the map. You
can use “X” to delete a map.

Option 6 takes the user to the primary Summary Report generation panel. Here the user
is able to create reports that contain statistical information on the performance of the target
application. This is DYNAMIC ISPF reporting, a real time-saver!

Option 7 allows you to sub-divide z/XPF’s reports into a series of one-second time segments.
You can then use z/XPF’s Summary Reporting to drill down within these time segments.

Option 8 is for Detail Reporting. Use this function to further investigate and understand
the statistics contained in the Summary Reports. This is how you drill WAY down into your
reports - right down to individual z/XPF-formated Trace records. There are a robust series of
filters available to you in Detail reporting. The topic of Detail Reporting gets its own chapter
further on in the book.

Option 9 is used to compress data capture dataset for FTP transfer to a desktop so that you
may view your reports with z/XPF-PC our desktop GUI interface.

Option 10 is used to alter the allocation parameters for your data capture dataset. Here you
can influence the Unit type, specify a VOLSER or specify whether you wish to use ISPF’s
View or Browse functions.

Throughout the following chapters of this book, we’ll discuss these options in detail (except
Option 10, which is fairly straightforward).

DUKESOFTWARE. | 41
5-8 Option 1: Allocating A Data Capture Dataset

We'll repeat ourselves a bit here, because there are two ways to access the next panel.
When Option one is selected from the PRIMARY CREATE PROFILE MENU panel, you will
next see the panel entitled, “ALLOCATE DATA CAPTURE DATASETS” (just as we showed
in Figure 5-1). See Figure 5-8-1 below:

---z/XPF
OPTION ===>
Data capture dataset names have a format of:
"HLQ.ADDRSPACENAME .DATE . TIME . PROFL "

Generate a list of datasets to choose from using criteria

specified below. Use an "x" as a wild card in any field.
Primary HLOQ. Defaults to tso userid if not specified.
Job/Task name/TS0 userid. This is the name of the address
space specified on the original request to capture data.
Date(format is DMMDDYY).
Time(format is THHMMSS)

OR

Specify dataset name and press enter.

DS1 ==>

Map load modules during allocation process.(yes/no)

Add non-CDE load module info to capture dataset.(yes/no)

PF37END TO EXIT

Figure 5-8-1.

The panel is divided into two logical parts. You may use the first four entry fields to select
a dataset or you may specify the dataset explicitly in the fifth field (but not both at the same
time).

Using the first four fields of the ALLOCATE DATA CAPTURE DATASETS panel:

This is where you can specify the individual elements of a capture dataset’s name, specifying
values for the High Level Qualifier, the Address Space, the Date, and Time. All datasets end
with the Low Level Qualifier of “PROFL”.

In the example above in Figure 5-4, the High-level qualifier is set to ZXPF - a system
default. Your naming convention may be different. You may contact your installing systems
programmer for this information, which is specified in the z/XPF input control statement
‘DATA_CAPTURE_DSN_HLQ=".

The next parameter is typically the target address space name that the data capture was run
against. If that was a TSO userid, the TSO userid will appear. [f it was a started task, then
the started task’s name will appear. Ifitis a batch job, then the job name will appear.

The next two fields allow you to specify (or wildcard) date and time values. You may use an
asterisk(“*”) to end any of the fields as a wild card. You may expand or contract any of the
variables to broaden or narrow the list returned.

42

| z/XPF User’s Guide

In this example (we’re still on Figure 5-4), we’'ve used an asterisk to set the Date and Time
variables to list all datasets for all dates/times.

Using the fifth field of the ALLOCATE DATA CAPTURE DATASETS panel:

You may either use the top portion of this panel to specify a data capture dataset name, OR
you can name it directly (you can’t do both). The “DS1 ==>" field allows you to explicitly
name a dataset. Enclose this dataset name in single quotations.

The next field on the panel tells z/XPF whether or not to map load modules identified during
the data capture process. The default value is “YES”.

The last field allows z/XPF to map modules that were loaded by “non-standard” means,
perhaps by way of a directed load. If you change this field to “YES” you’ll be directed to
another panel that asks you to fill in the name of the dataset which contains the statements
which “map” the non-CDE module(s) (see “How To Map Modules That Do Not Have A CDE
Entry” later in this chapter).

Using the sixth field of the ALLOCATE DATA CAPTURE DATASETS panel: “Map
Load Modules during allocation process”

If zZXPF’s default actions are taken, the user needs to do nothing. Maps will have been
created during data capture, written to the data capture dataset, then read in during report
initialization(after the dataset is allocated, opened, and prior to displaying the next panel).

If the user sets the value to NO in the panel in Figure 5-4 then no mapping of any kind will
take place. If there are maps present either from the data capture, or from a previous report
session where the user mapped load modules themselves, they are ignored.

If the value is set to YES in the, and there are no maps present in the data capture dataset,
then the same mapping function that would have taken place during data capture takes place
now. All load modules that were loaded into the target private area and identified during data
capture will be run through the Binder, and maps will be created when the module is found.
Note that these maps will then be written to the capture dataset to be used the next time the
dataset is opened for report generation.

If the value is set to YES, and there are maps present for some - but not all - of the identified
load modules, then those maps will be used. This means some load modules will have
csect psw displays, and some will not. This can only happen if the user originally said NO to
mapping, then manually mapped one/some of the modules, then closed and re-opened the
dataset.

The Seventh field of the ALLOCATE DATA CAPTURE DATASETS panel: “Add non-
CDE load module info to capture dataset. (yes/no)”

DUKESOFTWARE. | 43

z/XPF has the ability to map modules that do NOT have a CDE entry. Such modules can be
loaded via a “directed load” in a dynamic, as-needed basis. This technique is used by some
software vendors, and z/XPF’s can map such modules.

In the “ALLOCATE DATA CAPTURE DATASETS” panel, you can specify “YES” to “Add non-
CDE load module info to data capture dataset”. After the regular allocation panel, z/XPF puts
up another panel that requests the name of a dataset that contains special statements that
tell z/XPF where to find “hon-CDE” modules. The title of this panel is “SPECIFY DATASET
NAME”.

The dataset name that you enter into the “DSNAME?” field follows TSO naming conventions:
Use either a pure dataset name for a physical sequential file, or DSNAME(MEMBER) for
a PDS. If the high level qualifier for this dataset is not your TSO userid, then surround the
dataset name with single quotation marks.

In the dataset you specify in DSNAME, z/XPF expects to find one or more statements that
refer to the module name and its beginning and ending addresses. These statements are in
the format of:

LMOD=nnnnnnnn,BEGIN=XXXXXXXX,END=YYYYYYYY
Where:

LMOD=nnnnnnnn <== where nnnnnnnn is the name of the module, up to eight characters.
BEGIN=xxxxxxxy <== where xxxxxxxx is the virtual address of the start of the module.
END=yyyyyyyyy <== where yyyyyyyy is the virtual address of the end of the module.

You may define one or more LMOD= statements in your dataset. If zZXPF detects an error in
any LMOD-= statement, then the incorrect statement(s) will be logged to the ISPF log dataset.

When z/XPF accesses the DSNAME you specify, it will search your STEPLIB or LINKLIST
libraries and will map the load modules. Otherwise, you may manually map them using
Option 5 from the PRIMARY PROFILE CREATE MENU display.

5-9 Option 2: Display user comments in selected source data capture datasets

When you schedule a data capture with z/XPF, you're presented with the opportunity to
add text comments that will be included in the capture dataset for later review. If you select
Option 2 from the panel in Figure 5-3 you will see these comments if any have been created.
Tect commenting is a handy way to jot down when/where/why you initiated this data capture.

44

| z/XPF User’s Guide

When you use the variables in the top portion of the panel shown in Figure 5-4, you will see
the display entitled, “DATASET DISPLAY” See Figure 5-9-1 below:

-=--z/XPF--- DATASET DISPLAY

names. =3 ¢ ‘s’ in 1 - coelumn for the
then de 2 enter key. PF3/END its panel without

PF3/END TO EXI
Target Date

BOB 03/05/713
BOB B3/05/13
BOB 03/05/713
BOB B3/07/13
BOB 05/16/13
BOB B5/16/13
BOB 05/16/13
BOB 13/03/04
CONSOLE 12/06/11
FHCSRVER esg/29/712
FRANK 05/09/13
FRANK 12/06/711
MDLSERVE ps/23/182
MDLSERVE esg/2a3/712
MDLSERVE ps/s23/12
MDLSERVE og/s23s/12
MDLSERVE ps/23/182
MDLSERVE og/s23s12
MDLSERVE ps/24/12
MIKES pgs24/12
MIKE?Z ps/24/12
KXAXSRVER 05/09/13
XKKXKSRVER B5/09/13
XKKXAXSRVER 05/09/13
KKXKSRVER ps/24/712
ZXPF I VP i2g/028/11
3 XKXkKX Bottom of

Figure 5-9-1.

Use the Dataset Display panel to select a data set for reporting. Place an “S” next to the
dataset you wish to create reports for, and press Enter. Figure 5-9-2 below shows that one
dataset is going to be selected.

----DATASET DISPLAY---- Row 1 of 2B

SCROLL = > PAGE

names. Place a character 'S' in the : olumn fer the

then depress the enter key. PF3/END i 3 panel witheut an

PF3/END TO EXIT
SELECT HLQ Target Date Time

ZXPF BOB 03/05/ 09.51.
ZHXPF BOB 03/05/ 11.
ZXPF BOB B3/05/71¢ 15.
ZXPF BOB o3/’ / 09 .
ZXPF BOB B5/16/ 09.
ZXPF BOB 05/16/ 10.
ZXPF BOB B5/16/71:¢ 10.
ZXPF BOB 13/03/04 13.
ZHXPF CONSOLE 1i2/06/11 13.

Figure 5-9-2.

Press PF3/END to exit this function, and complete the allocation of the dataset.

DUKESOFTWARE. | 45

Figure 5-7 below shows the PRIMARY CREATE PROFILE MENU panel immediately after
the allocation process completes successfully for the selected dataset. Note the “DATASET
ALLOCATED” message in upper right portion of the panel :

et i 4 =l o PRIMARY CREATE PROFILE MEMU ---- DATASET ALLOCATED
OPTION
Enter Option

Select source capture dataset to use in report process.

Display user comments in selected source capture datasets.

List library contents contained in selected capture dataset.

Free allocated source capture dataset.

Map load modulessdisplay load module maps in selected =source dataset.

Yiew profile summary data. Summary =s=tatistics categorized by
Work Unit, Load Module, Csect, and PSW offszet. Includes DB2
statistics if the target accessed a DB2 sys=tem.

Yiew profile summary data specifying Time Segments. Allows a user
to set a Time Segment as small as one second.

Create a profile detail report. ¥Yiew event data by event type.
Create datasets for FTP process. Creates a compressed dataset to
be downloaded and used by =z~ XPF-PC.

Set report Browse-sView, dataszet wvolser and unit tuype.

PF3END to return to previous panel

Figure 5-9-3.

If you want to see more of the text in any z/XPF message, you can press PF1 to reveal it, as
below, in Figure 5-9-4:

--—-Zz/ XPF PRIMARY CREATE PROFILE MEHNHU ---- DATASET ALLOCATED
OPTION
Enter Option
1) Select =ource capture dataset to use in report process.
Display user comments in selected source capture datasets.
List library cont contained in selected capture dataset.
Free allocated so » capture dataset.
Map load modulessdisplay load module maps in selected source dataset.

View profile summary data. Summary statistics categorized by
Work Unit, Load Module, Csect, and PSW offset. Includes DB2
statistics if the target accessed a DB2 system.

VYiew profile summary data specifuing Time Segments. Allows a user
to set a Time Segment as swmall as one second.

Create a profile detail report. ¥Yiew event data by ewvent tuype.
Create dataset=s for FTP process. Creates a compressed dataset to

be downloaded and used by z/ XPF-PC.
Set report BrowsesView, dataset wvolser and unit type.

PF3/END to return to previous panel

ZXPFO12 ZXPF012 DYNAMIC ALLOCATI OF DATASET ZXPF.BOB.D110513.T122348
WAS SUCCESSFUL

Figure 5-9-4.

Figure 5-9-4 shows the effect of having pressed PF1, and the name of the allocated dataset
has been displayed. If, for some reason, this was not the dataset you intended to select,

46

| z/XPF User’s Guide
proceed to Option 4 to free the allocation, and then re-do the allocation process. .

To allocate a source capture dataset without using the catalog search and list function, the
DS1 variable must be filled in. Figure 5-9-5 shows the allocation panel with this variable filled
in. When the enter key is depressed on this panel, and the DS1 variable is not blanks or
spaces, the value in the variable is used to allocate the dataset, NOT the values in the top
part of the panel.

---z/XPF
OPTION ===
Data capture dataset names have a format of:
"HLQ .ADDRSPACENAME .DATE . TIME . PROFL "™

Generate a list of datasets to choose from using criteria

specified below. Use an "x" as a wild card in any field.

ZXPF Primary HLQD. Defaults to tso userid if not specified.

BOB Job/Task name/TS0 userid. This is the name of the address
space specified on the original request to capture data.

Dx Date(format is DMMDDYY).

Tx Time(format is THHHMMSS)
OR
Specify dataset name and press enter.
DS1 == ZXPF .B0B.D030513.T153552 . PROFLH

YES Map load modules during allocation process. (yes/no)

NO Add non-CDE load module info to capture dataset.(yes/no)

PF3/END TO EXIT

Figure 5-9-5.
With the DS1 variable filled in, the catalog search and select logic is bypassed.

5-10 Option 3: Listing Library Contents

Option 3 is used to examine the contents of the z/OS environmental libraries that are used
during Summary and Detail report processing to match an instruction address to a load
module. See Figure 5-10-1 below:

> ZXPF.BOB.D030513.T153552.PROFL
Use Any Non-blank Character To Select Desired List
List PLPA Entries. _ List Nucleus Entries.
List DB2 MEPL Entries. _ List Program Call Entries.

List Load Modules identified during data capture.

List Datasets in Joblib/Steplib and link list.

List Jes2 Common Area Modules.

Depress Enter key to request report
PF3/END To Return To Previous Panel

Figure 5-10-1.

Here is where you can select items that you want included in the report.

DUKESOFTWARE. | 47

[Of the choices above, “List PLPA Entries”, “List Nucleus Entries, “List DB2 MEPL Entries’
and “List JES2 Common Area Modules” will be the same for all data capture datasets created
by the same instance of the z/XPF server address space. That’s because these items, when
loaded at IPL time, don’t move. So you’ll get the same results for any address space.]

When z/XPF’s server address space initializes, lists are constructed for these entries from
their respective sources. If DB2 systems are active on the z/OS image, each system is
examined and a copy of the MEPL list is made. If the primary Job Entry Sub-system is JES2,
the JES2 Common Area modules are identified, and a list is created.

z/XPF uses a table to keep track of the currently valid Program Call numbers the target
application could use. At server initialization, a primary look-up table is built that contains
one entry for each PC defined with a system LX plus one entry for each of PC owned by an
active DB2 system. At that time, the server notes the location of the default system LX table
that all address spaces use. This look-up table is the default table z/XPF uses to validate
Program Call numbers. During data capture, z/XPF monitors the target profile application’s
Program Call environment. When the application’s environment is altered so that it is no
longer using the default system LX table to resolve PC numbers, a second table is built using
the application’s current environment as input. This second table is then used by z/XPF to
validate Program Call numbers.

All of the reports created using this function are directed to a report dataset. Depress the
Enter key after making the selection(s). You'll see your report. When you have finished with
the report, z/XPF allows the chance to keep the report. You may alter the name by over-
typing it, then put a “K” next to <== Keep/delete report. The file will be renamed, and saved
for reuse. An example of this panel appears below, in Figure 5-10-2:

---Z/XPF

SOURCE ==> ZXPF.B0OB.D030513.T153552.PROFL

REPORT ==> 'BOB.ZXPFLIB.D031113.T7154551 .B0OB"'

Overtype the report dataset name value to save the report dataset
with that name. Rename logic will invoke IDCAMS to rename the
dataset after it has been de-allocated.

k <== Keep/delete report. Set variable to "'k’ to keep report

just created. Report dataset will be de-allocated with overriding
disposition of KEEP. Any other value, including a blank, will
cause report dataset to be de-allocated with overriding disposition
of DELETE.

Change the wvariables as desired and depress the Enter key to
re-display the panel.

Depress PF3 or enter the END command to exit with keep/delete
and report dataset name settings.

Figure 5-10-2.

48 | z/XPF User's Guide
5-11 Option 4: Freeing Allocated Source Capture Datasets

z/XPF can report on one data capture dataset at a time. So, when you're finished doing
your reporting on a specific data capture dataset, you must free the existing dataset before
allocating another. Alternatively, if you exit z/XPF’s reporting structure, the dataset will be
automatically freed.

In the panel below, Place an “F” character next to the dataset you wish to free, and Press
Enter.

-—-2z/XPF
OPTION SCROLL ===> PAGE

PLACE A CHARACTER "F" IN THE FREE COLUMN TO THE LEFT OF THE
DATASET NAME, AND DEPRESS THE ENTER KEY TO FREE THE ALLOCATION.

PF3/END TO EXIT

FREE SOURCE CAPTURE DATASET
F ZXPF .B0OB.D030513.T153552 . PROFL
K 3K 3K 3K K K K K K K K KK KK KKK KKK ROK K KRRk kkk Bottom of data sokokkkokkkkkkkk ok kK kK kK kK ok % K K Kk % % 5k K Xk Xk X

Figure 5-11-1.

After you press Enter you'll see the message ““*FREE** appear in the dataset name, as in
Figure :5-11-2 below:

---z/XPF
OPTION SCROLL ===> PAGE

PLACE A CHARACTER "F" IN THE FREE COLUMN TO THE LEFT OF THE
DATASET NAME, AND DEPRESS THE ENTER KEY TO FREE THE ALLOCATION.

PF3/END TO EXIT

FREE SOURCE CAPTURE DATASET
**%FREE*% .D030513.T7153552 . PROFL
s ok ok ok ok ok koK K koK kKoK oKk kokokokokkokokokkokckkk Bottom of data skoskokskokok ok skok skok ok ok sk ok sk ok ok sk ok 3k 3Kk 3k ok 3k kK ok 3K Kok K

Figure 5-11-2.

DUKESOFTWARE. | 49
5-12 Option 5: Map load modules/display load module maps

Use this function to map a load module that isn’t mapped, to delete and re-map a load
module, or to just delete the existing map for a load module. When you select Option 5 you
will see a panel similar to Figure 5-12-1:

0AD MODULES FOR REPORT

PROFILE SOURCE CAPTURE DATASET
'"BOB.ZXPF.V2R2M4 .PROFL"

= modu is mapped, the d

s the =c
for a ma
PF3/END TO VE MAPPINGS

LM NAME MODULE SOURCE DATASET NAME VOLSER
APDRVR M1O0O0. LOAD VPWRKC
ISGLCRT 1 1 . CSSLIB SCRES1
AP I VPZRO .M1oB8.L0AD VPWRKC
AP I VPONE . . LOAD VPWRKC
AP I ¥YS5RB1 . VPWRKD
DSNAaLI 5 i VTDAlA
DSNACAF S 0 .)) VTDAlA
AP | VNRNT . - LC VPWRKC
AP I VNRNT

AP | VNRNT APF1 . V100 .LOAD

AP | VNRNT A LM1o00 . LOAD A

CHROK RO OROROROK RO OO RO OO K KKK Bottom of data 300K OK KKK K K OKOK K OK KKK KK K ROK K OROK KK

%

Figure 5-12-1.
The field to the left of the load module name will accept one of three values. “M”, “D”, or “X”.

“M” will map a load module.
“D” will display a module map.
“X” will delete an existing map.

To map a Load Module, place a character “M” in the input variable, and press the Enter key.
Joblib/Steplib and Linklist datasets will be searched for the load module, and when found, the
Binder will be used to create the csect map for the load module.

If you need to map the load module using a library not in the Joblib/Steplib and Linklist
datasets, then you may enter a dataset name in the variable to the right of the load module
name. Overtype the “NOT MAPPED” characters with the dataset name, specified in TSO
format. If the dataset you wish to map from does not have your TSO userid as the high-level-
qualifier, you'll need to enclose the dataset name in single quotes. You may also have to
specify the VOLSER to be searched for the map.

50 | z/XPF User's Guide

Let’s display a csect map. In this example, I've put a “D” next to BMXWREXX (out of SYS1.
LINKLIB) and have displayed the csect information within it. See Figure 5-12-2 below:

---z/XPF Row 1 of 30
OPTION SCROLL ===>

Source DSN = SYS1.LINKLIB
Load module = BPXWREXX

PF3/END TOD EXIT

CSECT NAME BEGIN END LENGTH

OFFSET OFFSET
EDCXABND

00000000 00000038 00000038
EDCXBTCA

00000038 00000A2C 000009F4
EDCXCEE

00000A30 00000ARS5C 0000002C
EDCTCHEA

00000A6B0 000013EC 0000098C
EDCXENY

000013F0 00001678 0000028B
EXIT

Figure 5-12-2.

I've only shown a part of the display that resulted, because the csect list for this module goes
on for a while. Sharp-eyed readers will note the “vertical offset” between the name of a csect
and its extent information. This is because z/XPF has to allow for csect names that approach
63 characters in length. So, while the display looks bit odd, there’s a good reason for the
design.

To delete an existing map, place a character “X” in the input variable to the left of the Load
Module name, and depress the enter key. See Figure 5-12-3 below:

LOAD MODULES FOR REPORT

PROFILE SOURCE CAPTURE DATASET
‘'BOB.ZXPF.V2R2M4.PROFL'
I f the module is mapped, the dataset used as input to the mapping
se character 'M' to lect a module fo
mapp 9. may spe-< y a dataset name to e for the map function.
An asterisk ' - ised as a wild *d in ny qualifier in t * name
i = y 1le using joblikb/stepl ib/link |ist datasets at
time of ¥ leave the source field as is.
'D' To display a map for a mapped module. '®' To delete a map.
PF3/END TO SAVE MAPPINGS

LM NAME LOAD MODULE SOURCE DATASET HNAME VYOLSER
APDRVR NOT MAPPED

I SGLCRT S¥S51.CSSLIB SCRES1
APIVPZRO APF1 .¥100.LOAD VYPWRKC
AP I VPONE APF1 . VioB . LOAD :
APIVSRB1 APF1 .

DSNALI DSNA10 .SDSNLOAD VTDAlA
DSNACAF DSNAl10 .SDSNLOAD VTDAl1lA
AP I VNRNT APF1 .V100.LOAD VYPWRKC
AP I VNRNT APF1 . Viob . LOAD

AP I VNRNT APF1 . V100 . LOAD

AP I VNRNT AD

R SR R R SRR R R R R R S (X Bottom of data XXXXKXX

%

Figure 5-12-3.

You can see that the status for Load Module APDRVR is now “NOT MAPPED”.

DUKESOFTWARE. | 51

5-13 Summary Reporting

5-14 Option 6: Create Profile Summary Reports - zZXPF’s Dynamic ISPF panels

[Tutorial digression: Because z/XPF captures each and every Trace Record for the span of
time in which you do a data capture you can end up with HUGE VOLUMES of data. So, while
other profilers may leave you wishing you had a bit more of a statistical sample, with z/XPF
you’ll wish you didn’t have SO MUCH to look at. That’s why it's important to understand how
to limit the amount of information you have to look at with z/XPF. Some of this work is done
in the next panel, and more is done transparently in z/XPF’s dynamic ISPF reporting. Later
on, we’ll discuss Detail Reporting, and then using filters wisely will become CRUCIAL to you.]

Select Option 6 from the PRIMARY PROFILE CREATE MENU panel to begin Summary
reporting. You'll get the panel shown in Figure 5-14-1 below:

---z/XPF
ZXPF .BOB.D0306513. 1153552 . PROFL

Any non-blank character here to enter Summary Report prcessing.
This is the "trunk’' of the hierarchical report tree.

N (Y/N) Display a brief narrative on report navigation upon entry
to profile data. Default is Y(yes).

_ £== Change current time segments for report. Any non-blank
character to proceed. Current number of time segments is 01

10 (== Specify number of unique program locations to include in
the report. Default is 10.

N (Y/N) Create PSW level statistics for all Load Modules. Default
is N(no). z/XPF will create PSHW level statistics for all Load Modules
that are mapped. Setting this to Y will include/create PSWH level
statistics for modules located in the Nucleus, CSA and PLPA.

PF3/END to return to previous panel.

Figure 5-14-1.
From this panel you may make some initial choices before drilling down into your report.

To accept z/XPF’s defaults, tab to the first field in the panel, insert an “S” and press Enter.
That’s all you really need to do.

The next field in this panel allows you to display a short tutorial on how to navigate in the
reporting environment when the report has been processed and is ready for you to look at.

If you select “<=== Change current time segments for report., etc.” a subsequent panel will
appear that allows you to break the report into “time segments”. You can specify up to ten
evenly divided time segments. If you change this value, another panel will display and you
may choose to include any time segments by putting an “I” next to them or exclude them by

52 | z/XPF User's Guide

putting an “X” next to them. This allows you to isolate the time segment(s) that is/are most
relevant to you, and ignore the rest.

[Please note: In Summary Reporting you now have a second opportunity to influence the
number of Time Segments in your report. That is coming up soon, under “Option 7” from
the Summary Report Panel (when we get there).]

In the fourth field in Figure 5-14-1, you can alter the number of unique program locations from
the default value of “10” to up to 99. You can consider this the “depth”, or the “scope” of a
report. The Unique Program Locations setting influences the scope by showing you only the
most significant “nn” levels in any report. The default setting is “10”, which means you’ll see
only the top ten Work Units, or load modules for any report. Since you’re probably interested
only in the “heavy hitters”, the default of ten will be best for most situations.

In the fifth, or last field in this panel you can choose to have z/XPF create PSW statistics for
load modules that are in system areas (the Nucleus, the CSA and PLPA) rather than just the
load modules in the Private Area of the target address space. The default is “N”, for “No”.
You can over-ride this if you need to investigate more deeply into operating system services,
accepting the proviso that your report may be a good deal larger, and take more time to
generate.

OK, we’re done with the panel in Figure 5-14-1. Let’s put a value in the first field and press
Enter. You'll see an intermediate panel like the one below, in Figure 5-14-2:

---z/XPF

Total number of records to process 18581

Total processed 2035
Percent complete 16.95
0
3K KKK K
Process start time
Current time

Elapsed since process start

Figure 5-14-2.

When you create a report for the first time z/XPF parses your data capture dataset into
various categories. As it proceeds, the line of yellow asterisks will gradually extend across
the page from left to right until the report is parsed. For very big reports, this could take some
time. Find something else to do.

DUKESOFTWARE. | 53

If you asked for a brief narrative on z/XPF’s report navigation (the second field in Figure 5-18
above), you will see the, panel in Figure 5-14-3 below:

---z/XPF-VERSION 02 -RELEASE 02 -MOD LEVEL 02 -BUILD DATE- 02/23/2013 10.43
COMMAND SCROLL ==> CSR
Place the cursor on any line in this display, and
depress the enter key to start viewing profile data.

Use Page Down/PF8 and Page Up/PF7 to view this brief
narrative.

HIERARCHICAL ARRANGEMENT OF DATA

z/XPF statistics are arranged in hierarchical order.
At the base of the hierarchy is the Time Segment.
Segment data contains totals for all Work Units with
event activity during the Time Segment.

A work unit is either a task/TCB or an SRB. Work Unit
statistics contain totals for all Load Modules iden-
tified executing under that Work Unit.

Csect statistics are accumulated for all Load Modules
that are mapped, as well as for DB2 Csects identified
using the MEPL list.

When Csect information is available, statistics are
accumulated at the PSW offset level. When viewing
Csect PSW level data, the PSW value is the offset
from the beginning of the Csect in the Load Module
and is displayed in Hex.

The default behavior will skip PSW grouping for Load
Modules that are not mapped. This may be changed on
the previous panel/display.

ORDER OF PROFILE DATA IN REPORTS

REPORT/DISPLAY NAVIGATION INDICATORS

Figure 5-14-3.
This panel goes on for one more page-down operation, and it is worth your time to read, at

least once.

With z/XPF’s dynamic ISPF reporting you can quickly drill down through each level to see
where your program is spending most of its resources, whether within your program itself or
within a system service called by your program.

5-15 Navigating in Dynamic ISPF

Within each panel you can choose to select a report category and drill down. In some cases
you can drill down and expand at the same time (depending on the context of your report).

54 | z/XPF User's Guide

As you proceed, z/XPF keeps track of your “place” in the yellow text at the top of each report
panel. So, if you drill from Time Segment to the Work Unit Level to the Load Module level, z/
XPF shows you that. If you drill “up”, z/XPF’s panel reacts to that action as well.

To “drill down within the same category” operation, position your cursor in any line that has
this character string next to it: “Dril”, then press Enter. You may also enter a “D” next to
that report category, and that will perform a drill operation as well. The Enter key and the D
character are interchangeable.

If you see the characters “DrEx”, you have three choices. You can put the cursor in that input
area and enter a “D” (for “drill”) or press Enter (both actions perform a “Drill” operation) or you
can enter an “X” to expand.

* A Drill operation proceeds downward in the report hierarchy.
* An eXpand operation drills down and breaks out components laterally within the
report hierarchy.

Here’s an example: If | wish to investigate Total Elapsed SVC Time, by Work Unit (see the
Figure on the following page), | tab to the input field there and press Enter. Now, I’'m looking
at a panel that shows the total SVC time within the time segment, and the greatest consumers
of SVC elapsed time are shown, sorted from highest consumer to lowest. Here, | have a
choice to either drill down (by pressing Enter or using a “D” character’) OR | can “X” for
expand.

« If I drill here, I'll see the SVC elapsed time for the next level down (in this case I'll have
gone from the Time Segment to the Work Unit level). I'll see which Work Unit used the
most SVC elapsed time.

« If l expand here, I'll see elapsed SVC time at the Work Unit level, but now the report drills
to the Work Unit level AND breaks the statistics out by the actual SVC numbers for that
Work Unit.

[Anecdote: The “Dril” and “DrEx” keywords take some getting used to. We went over
and over 3270 screen attributes and character string combinations searching for a way to
make these actions look more intuitive and less wierd. Do YOU have a better suggestion
for these actions? We're listening...]

z/XPF’s FIND Command

When you are in z/XPF’s report panels, ISPF’s FIND and RFIND commands are available
to you. These are especially handy when you’re looking at very large reports and need to
locate something quickly. These commands are case-sensitive, so it's important to type
precisely what you’re looking for. The commands work as you’d expect them to.

Let’s get to the main report panel.

DUKESOFTWARE. | 55

Once you have scanned the educational panels, you can put your cursor anywhere on the
page and press Enter. Now, you see the top panel of the report, as in Figure 5-15-1 below.
I've artificially created the entire panel so you can see all that is available here:

---=z/¥XPF-VYERSION B2 -RELEASE 82 -MOD LEVEL 08 -BUILD DATE- B06/14/2013
COMMAND =P . SCROLL ==» CSR
=/ ¥PF Prefile Summary Repocrting
Place your cursocr on any report descriptioen | ine between the
under-1ined teoepic heading and the next, then depress the Enter
te view Summary Report statistics for that category of data.

Repeoert Display Navigation:
Drill down te next level down in the repeort
hierarchy.
Drill down te next level down in the report
hierarchy, or Expand on the current data.

Page down to see all data categories

DATA CATEGORIES, BY WORK UNIT, WITHIN TIME SEGMENT

Lists Contention, Wait, SVC elapsed time, Program Call, Memory
Management, and Recovery statistics within a Work Unit, by Work
Unit, within a Time Segment.

TOTAL EVENTS BY WORK UNIT, WITHIN TIME SEGMENT
Same data as above, but different order. Separate
breakout of each Work Unit, within data category,
within the time Segment.

TOTAL ELAPSED SV¥C TIME, BY WORK UNIT
Will list tetal elapsed SVC time for all Work Units
by Time Segment.

PROGRAM CALL ACTIVITY, BY WORK UNIT
Will list tetal Program Calls obkbserved for all Werk
Units by Time Segment

SELF-INDUCED WAIT TIME, BY WORK UNIT
Includes Wait 5V¥VC, Branch enter Wait, Pause, and
Stimer SVC, for all Werk Units by Time Segment.

CONTENTION-INDUCED WAIT TIME, BY WORK UNIT
Includes 5V¥C Engq, ISGENQ, Lock, Latch, and CPU
contentien, fer all Werk Units, by Time Segment

MEMORY MANAGEMENT EVYENTS, BY WORK UNIT
Includes Getmain/Freemain activity, Stor‘ag‘:_j,e Obtain/

Storage Release activity, and |IARVYE4 activity, for
all Werk Units, by Time Segment

DBE2 ACTIVITY, BY SQL STATEMENT AND WORK UNIT
Includes 5QL text, total activity by 5QL statement,
tetal activity by DBE2 Csect.

MOST FREQUENTLY OBSERVED PSW/INSTRUCTION

Hierarchical organization is slightly different than
cther repecrts. The reocot of the report hierarchy is
PS5SW offset, with a branch for each Work Unit that had
event activity at that P5W offset/location.

DATASET ACTIVITY
Lists datasets identified during data capture
counts are included

Figure 5-15-1.
These categories are reasonably self-explanatory. Let’s try a few.
5-16 Data Categories, by Work Unit, Within Time Segment

Tabbing down next to the first sub-topic in Figure 5-15-1 and pressing enter performs a “drill-
down” into “Data Categories, by Work Unit, Within Time Segment”. See Figure 5-16-1 below:

56 | z/XPF User's Guide

=/ XPF-VERSION B2 RELEASE B2 MOD LEVEL 04 BUILD DATE B5/15/2013 13 .28
COMMAND == SCROLL ==»> CSR
=/ ¥XPF Report Hierarchy:
Time Segment: 01

(HH
Segment Begin: B8 .17
Segment End: B8 .:
Segment Elapsed: oo .

z/XPF event types, by category, within Work Unit

Te view this display at the Load Module level, place
the cursor on the | ine that contains the Work Unit
name and type, then depress the Enter key.

Te view data for a specific category, place the
cursor on the |line for the categery, then depress the
enter key. The next display will centain that data at
the Load Hodule level, for the Work Unit.

Work Unit: AP IVPZRO Type: TASK
Time 1st observed act H 09.18.05:93
Time last observed act ity: 09.36.41:71

Contention time, Wait time, and SVC elapsed as a
percentage of Time Segment elapsed time.
.10...880...390...48...58...68...70...

Contention

Contention time, Wait time, and SVC elapsed as a
percentage of the total of all Work Units in the
Time Segment, in each category.
.10...88...490...48...58...68...70...
Contention

Figure 5-16-1.

z/XPF always tries to orient you by showing you the top paragraph of text (in yellow). There
is only a single Time Segment for the report. Begin, end and elapsed times are given.
Then z/XPF tells you what you'’re looking at. The greatest consumer of resources (Work
Unit APIVPZRO) is sorted to the top of the report, and you can see three sub-categories:
Contention, Wait Time and SVC Elapsed (time).

Clearly, Work Unit APIVPZRO is spending about 50% of its time in a Wait state. Let’s drill
down. Pll put my cursor next to the Wait Time line and press Enter. | see Figure 5-16-2, on
the next page:

[The next few pages in this book are going to look a little wierd because of the size of each
display. I’'m making the assumption that you're reading “glass” here. If you decide to print
this book then | suppose we'll kill a few more trees...]

DUKESOFTWARE. | 57

-=/XPF-VE 1 ON 82 -RELEASE B2 -MOD LEVEL ©O4 BUILD DATE- B05/15/2013
COMMAND b SCROLL ==3» CSR
=/ XPF Report Hierarchy:

Time Segment: 01

|]==> Work Unit: APIVPZRO

Hierarchical drill down for: Wait data
Current level of repert hierarchy: Loead Module
Tetal Wait time in Work Unit: B89.46:56.5155

Wait data, by Load Module, within Work Unit

ti in € o Modul e:
Time =n t sed time:
..80...°¢

Tetal SVYC and Branch entered Wait time:

Number 3 served entry Wait:

Numkber o tim entry resulted in Wait:

Average Wai in H

Percent of total Wait tin g
.190...20.. .38.. .48...50...608. ..

al Time nent el e
. .40. ...60.
+

Stimer Wait time:
of tin cbser d Stimer:

Wait time:
tal Wait time:

Time gment elapsed time:

Figure 5-16-2.

Now | can see that within the Work Unit APIVPZRO, load module APIVPZRO accounted
for almost 50% of Wait time. SVC and branch-entered Wait time was less than 1% of this
aggregate, and most of the Wait time is due to STIMER Wait. We’'ll drill down again into load
module APIVPZRO to isolate Wait time at the csect level.

See Figure 5-16-3 below:

58 | z/XPF User's Guide

oa

VERS I ON
OMMAND ==>

=/ XPF Report Hierarchy:

Time Segment: 01
|==> Work Unit:
==% Load Modul

drill
of
time i

Hierarch
Current I
Total Wait n

Wait data, by Csect,
AP I VP
Total
Percent

-18..

Wait time in
of total Time
.28...30. .

Total Branch
b mbher
Num

verage
Percent

SVC and
o f
of
Wait
total
.30. .

er

Wait

Time

Stimer Wait
of times
Stimer Wait
ef total Wait
.20...30..

Total
Number
zrage
ent
.10..
total

of ime

*

It appears that csect APIVP is doing most of the waiting, with 49.87% of the entire Time
. See Figure 5-15-5 below:

Segment. We can drill down again

RELEASE 02

down
report hierarchy:
Lead

within

.40, .
entered

~wved

.40. .

.40. .

D LEVEL D4 BUILD DATE 05/15/28013

ROLL ==» CSR

AP IVPZRO

e: APIVPZRO

Wait data
Csect

89.19:97.1636

for:

Module:

Load Module

sect:

Segment elap
.208...68...

Wait time:
te Wait:
in Wait:

entry
resul ted a
time:
.50...60...: .80. ..

time:

.88 .. .1

Segment

.50..

elapsed

.68...70..

time:

-.50...60. .. -80...

Segment elapsed time:

(KXKXKXBottom OFf DataXx

Figure 5-16-3.

13.288

DUKESOFTWARE.

-2/ XPF-VERSION 82 -RELEASE 02 MOD LEVEL o4 BUILD DATE- 05/15/2013
COMMAND ==3 SCROLL ==> CSR
=/ XPF Report Hierarchy:
Time Segment: 01
== Weork Unit: APIVPZRO
==3% Leoad Module: APIVPZRO
==> Csect: APIVP
Hierarchical drill down for: Wait data
Current level of report hierarchy: PSW offset

Tetal Wait time in Csect: .19:97.1636

Wait data, by P5W offset, within Csect

Csect PSW offset: ®x'7eca’

Tetal Stimer Wait time:
of times observed >t imer:
Stimer
of tot i ment elapsed

«eoB...88.,.,.78...
X'1414"
Stimer Wait time:
of times observed Stimer:

imer Wait t
tot I Time

Stimer Wait time:
of times observed Stimer:
ye S5t imer Wait time:
o f total Time Ssament 2 | B S e t+ ime

Figure 5-16-4.

It looks like the “culprit” here is at offset X’72CA’. Let’s drill again, shall we?
We do the drill operation and get this panel. See Figure 5-16-5 below:

60

| z/XPF User’s Guide

=/ XPF-VERSION B2 RELEASE B2 MOD LEVEL 04 BUILD DATE 05/15/2013
COMMAND =7 . SCROLL ==» CSR
=/ XPF Report Hierarchy:
Time Segment: 01
|==% Work Unit: APIVPZRO
|]==> Load Module: APIVPZRO
==» Csect: APIVP

Csect:

Offset of PSW in Csect:

Load Module: AP IVPZRO

Offset of PSW in Load Module X'zaca'

Executing under Work Unit: AP I VPZRO

Event type: SvVC

SVC data:
SVC number: 47
SVC description: : STIMER-STIMERM
Tetal elapsed time this SVC: 83.53:75.6230
Average elapsed time this SVC: 0D .0B0:10.28569
Number of times observed entry teo SVC: 2,279
Mumber of times observed exit from SVC: 2,279

Event type: Interrupt

Interrupt type(s) and total counts:

1 /0 9
Task dispatch 1

Mapped using: APF1 . V100.LOAD

Tetal events this PS5SW:

Percent of total Csect events:

Percent of total Leoad HMeoedule events:

Percent of total Werk Unit events:

Percent of total time segment events:

Time of 15T observed event!:

Time of last observed event:

Event number of 1st observed event:
ved event:
X¥XBottom OFf DataXXXKXXXX

Figure 5-16-5.

Having drilled to the “bottom” level, we see that within the single Time Segment that makes
up this report, within the Work Unit APIVPZRO, within the load module APIVPZRO within
the csect APIVP at offset X’72CA’ the program is issuing a STIMER SVC (SVC 47). We've
arrived at this information quickly, just by tabbing and pressing Enter at specific places.

You can “back out” of any level of the report by pressing PF3.

[Worth repeating: You can FIND whatever you need to in a report by typing “FIND”, and
then typing the thing you want to see (case-sensitive). This is useful for quickly orienting
the report to what you're looking for (a load module name, a csect, etc.). The “RFIND”
command is also supported.]

That was just one example of using z/XPF’s new dynamic ISPF reporting.

Let’s back out, and try a different approach. My last drilling sequence was into the “Data
Categories, by Work Unit, Within Time Segment. In that enquiry, | quickly drilled down into
APIVPZRO’s Wait Time report path. This time, I’'m going to drill down to the PSW level in by
Work Unit, to load module, to csect and finally to the PSW offset.

Here’s the first screen-full of z/XPF’s Profile Summary Reporting panel in Figure 5-16-8
below:

{PF-VERS I ON
COMMAND >

-REL

DUKESOFTWARE.

-MOD LEVEL 03

-BUILD DATE-

SCROLL

z/XPF Profile Summary Reporting

Place your
under-1 ined

cursor
tepic

Nawv
to

Report Display
Drill docwn
hierarchy.
Drill down
hierarchy,

teo
or

Page down to see

DATA CATEGORIES

on
heading and
te view Summary Report statistics

all

any report description line
the next, then

for

igation:

next level down in the report

down in the
the current

next level
Expand on

report
data.

data categeories

WITHIN TIME SEGHMENT

between
depress the Enter

that category of

e3/s/ar’/2013

= CSR

the

data.

Call,
Unit,

List entent lapsed Program
Management oV i E]

Wor
Unit, with

Memory

by Work
ime Segment.

TOTAL EVENTS BY WORK UNIT, WITHIN TIME SEGHMENT
Same data but different

out Unit, within
the Segment.

order.

data

as Separate

brea categery,

within time

TOTAL ELAPSED S¥WC TIME, BY WORK UNIT
! 11 Il ist total elapsed SVC time for

by Time Segment.

Units

PROGRAM CaALL aACTI UNI T

PROGRAM CALL ACT IVITY, BY WORK UNMIT
Will 1ist tetal Program Calls observed

Units by Time Segment

for

SELF-INDUCED WAIT TIME, BY WORK UNIT
Includes Wait 5V¥C, Branch enter Wait,
SVC, all Wor Units by T

Pause, and

Stimer for ime Segment.
CONTENTION-INDUCED WAalT TIME
5vC Eng., | SGENQ ,

ntention, for all Work

BY WORK UNIT
Latch, and
by Time Seg

Includes

CPU
nent

Lec

Units,

Figure 5-16-8.

Again, | drill down into Data Categories, by Work Unit, Within Time Segment, and | see
Figure 5-16-9 below:

62 | z/XPF User's Guide

=/ XPF-VERSION B2 RELEASE B2 MOD LEVEL 04 BUILD DATE OD5/15/2013 13.828
COMMAND
=/ XPF Report Hierarchy:
Time Segment: 01

(HH.MM.SS:
Segment Begin: 68.17.59:
Segment End: 08 .36.482:
Segment Elapsed: oe.18.42:

=/ ¥PF event types, by category, within Work Unit

Te view this display at the Leoad Module level, place
the cursor on the | ine that contains the Werk Unit
name and type, then depress the Enter key.

To view data for a specific category, place the
cursor on the | ine for the categeory, then depress the
enter key., The next display will contain that data at
the Load Module lewvel, for the Work Unit.

Work Unit: AP I VPZRO Type: TASK
Time 1st observed activity: 069.18.05:
Time last observed activity: 09.36.41:

Contention time, Wait time, and SVC elapsed as a
percentage of Time Segment elapsed time.
.1i0...288...30...40.. .50...60...70...
Contention

Wait time

SVYC elapsed
Contention time, Wait time, and SVC elapsed as a
percentage of the total of all Werk Units in the
Time Segment, in each category.

..10...20...3686...408...50...60...70...

Content ion

Wait time
SVC elapsed

Figure 5-16-9.

This time, instead of investigating Wait Time, I'll tab to the Work Unit APIVPZRO and drill
down. That gets me from the Work Unit level to the load module level, and | want to drill into
the APIVPZRO load module. | drill once more and arrive at Figure 5-16-10 below:

---=z/XPF-VERSION 82 -RELEASE 02 -MOD LEVEL 084 -BUILD DATE- 085/15/2013
COMMAND == SCROLL ==3» CSR
=/ ¥XPF Report Hierarchy:
Time Segment: 01
==> Work Unit: APIVPZRO
ks Load Module: APIVPZRO

Hierarchical drill down for:
Current level of report hierarchy:

Mbr of Csects identified, this Load Module:
=/ XPF event types, by category, within Csect

Te view this display at the Csect PSW offset level,
place the cursor on the | ine that centains the Csect
name, then depress the Enter key.

Te view data for a specific category, place the
cursor on the | ine for the category, then depress the
enter key. The next display will then contain that
data, at the Csect level, for the Load Module

Csect: AP I VP
Time 1st observed activity: 09 .18 .06
Time last cobserved activity: 09.36.41

Contention time, Wait time, and SVC elapsed as a
percentage of Time Segment elapsed time.
.19, ..20...38...408..,.50...60...70...
Contention

Wait time
SVC elapsed

Figure 5-16-10.

DUKESOFTWARE. | 63 Now |
see a list of csects, and the first one in the list is the APIVP csect. | drill down again. See
Figure 5-16-11 below:

- -2/ HXPF-V 510N B2 -RELEASE 82 -MOD LEVEL 04 -BUILD DATE- B85/15/2013 13.828
COMMAND . SCROLL == CSR
Repeoert Hierarchy:
e Segment: 01
Work Unit: APIVPZRO
|==> Leoead Module: APIVPZRO
Csect: APIVP

Hierarchical drill down for: Event type by PSW
=/ XPF event types, by category, within csect

This display identifies the activity by type at the
PSW level within a Csect. The PSWs are |listed in
low to high offset order. The bar is computed as a
percent of the category for the entire Csect.

To view data for a specific PSW, place the cursor on
the 1 ine for the category, then depress the enter
key. The next display will contain an expanded view
of the data at that psw offset.

The color scheme for the data is different in this
display than in the preceding displays.

WHITE it Time
GREEMN El aps

YELLOW = Pgm Call
TURQ = Interrupts
BLUE = Recovery

Csect name: AP I VP
Time 1st ockserved activity: 69.18.06:97.9999
Time last observed activity: 09 .36.41:70.2112

Event types, b as a percentage of csect

PSW Tupe «:++..189,...80...30...48...50...6
®'acs’ : than
®'p2Cc' SVC ,ess than
®'aac' A)
X'AS50 " SVC s than
®'AasB0 " 1
®'aza' : ess than

Figure 5-16-11.

Now | get a MAP of all PSW offsets in my program with a color code to denote the kind of
actvity, and the percentage of resources spent at that offset! WAY COOL. Ill perform a
Page Down so you can see more of the report. See Figure 5-16-12 below:

---=z/XPF-VERSION 3 a2 -MOD LEVEL 04 -BUILD DATE- B85/15/2013 13.28
COMMAN SCROLL ==> CSR

than

ti';ar1
t.l'-;an
t.l'\.ar.l
t.h.ar.l
t.han
than

Figure 5-16-12.

I'll Page Up to offset '9C8’ and drill down one more time so you can see the final level of the
report. See Figure 5-16-13 below:

64 | z/XPF User's Guide

-=-=-=2/XPF-VERSION B8 -RELEASE 02 -MOD LEVEL 84 -BUILD DATE- ©85/15/2013 13.28
COMMAND ==> SCROLL ==» CSR
=/ ¥XPF Repeort Hierarchuy:
Time Segment: 01
==> Werk Unit: APIVPZRO
|==% Load Module: APIVPZRO
==> Csect: APIVP

Csect: AP I VP
Offset of PSW in Csect: ®'gcs'
Lead Module: AP I VP ZRO
ODffset of PSW in Load Module x'acs'
Executing under Work Unit: AP I VPZRO
Event type: Program Call
Program call data:
PC number: 00180605
Toetal elapsed time this PC: 00.00:00.0119
Average elapsed time this PC: 00.00:00.0119
PC info:
. u] D =d (2] =] 04% ¢t s
HNumber of times ob: rved PC:
Number of times ma hed PR/PT to PC:
Mapped using: APF1 . V1i00.LOAD
Teoetal events this PSW:
Percent of teotal Csect events:
Percent of total Load Module events:
Percent of teoetal Work Unit events:
Percent of total time segment events:

Time of 1ST observed event:
Time of last observed
Event number of E
Event number f bserved event:
KK K K K K KK ¢ K K K K KBottom OF Dat a3 KKK KKK KKK

Figure 5-16-13.

We have arrived at the final depth of the report. At offset 9C8 within csect APIVP within load
module APIVPZRO running under Work Unit APIVPZRO within the single Time Segment in
this data capture report, a program call has been made to PC number 180605. It took an
elapsed time of 119 micro-seconds to complete. The “PC Info” field contains the first 60 or so
bytes of the Program Call as an “eye-catcher”. There is more on the screen for you to look
over. Stare at it for a few seconds. This is GOOD STUFF.

z/XPF’s dynamic ISPF Summary Reporting is a nice advance over the previous “tabular-
only” approach. We think it will greatly speed you in your work with the product.

DUKESOFTWARE. | 65
5-17 Most Frequently Observed PSW/Instruction Report

My favorite z/XPF report is the “MOST FREQUENTLY OBSERVED PSW/INSTRUCTION?”,
Report, which occurs on the next page of the panel (I am lobbying to have it moved to the
top!). This report is a great initial way to find WHERE your programs are spending most
of their time. We expect that anyone is going to want to see this first. I'll put the cursor
next to Most Frequently Observed PSW/Instruction and press Enter. z/XPF performs a sort
operation for you that looks a bit like figure 5-32 below:

---z/XPF-VERSION 02 -RELEASE 082 -MOD LEVEL 04 -BUILD DATE- 05/15/2013 13.28
CSR

ait. Sorting chain of PSW BLOCKS
cending order, by event count.

bloecks in chain 1641

so far 3a

SELF-INDUCED WAIT TIME, BY WORK UNIT
Includes Wait SVC, Branch enter Wait, Pause, and
Stimer SVC, for all Work Units by Time Segment.

CONTENTION- INDUCED WAIT TIME, BY WORK UNIT
Includes SV¥C Eng, ISGENQ, Lock, Latch, and CPU
contention, feor all Work Units, by Time Segment

Figure 5-17-1.

z/XPF is now sorting the PSW blocks it has identified, into a sequence of “most active” to
least active”. When the sort is completed, you see something like Figure 5-17-2 below:

=/ XPF-VERSION 02 -RELEASE 02 -MOD LEVEL 04 -BUILD DATE- B85/15/2013 13.28
COMMAND ==> SCROLL ==» CSR
Hierarchical drill down for: Tetal event count by PSW
Current level of repert hierarchy: Time Segment
This is the base of the report hierarchy
{HH.MM.SS:TH)
Segment Begin: es. .9599:45
Segment End: o8 . .42:85
Segment Elapsed: 0o. .42:79
Total number of unique PSW offsets with events: 1,641
Total PSW's in this display: 10

Event count, by PSW leocation, in descending order

Load Module: DSNACAF Csect: DSNHNAPRH
offset: HK'BE' Total events this offset:
of time segment total events:

.208...38...40...508...60...70...80...90...

Work Units with activity, this PSW:
AP I VYPONE Type: TASK
Total events, this PSW location, this Work Unit:
Weoerk Unit percent of total events, this PSW:

Jlerk Unit: APIVPZRO Type: TASK
al events, this P5W locatien, this Work Unit:
Work Unit percent of total events, this PSW:

Unit: I0SVCPPX Type: SRB
events, this PSW location, this Work Unit:
Unit percent total events, this PSW:
than 1 p

K Unit: IEAGT

al events, th

k Unit percen > total events,
than 1 pe

Figure 5-17-2.

66 | z/XPF User's Guide

Understanding this report takes just a bit of orientation. The MOST FREQUENTLY
OBSERVED PSW/INSTRUCTION Report inverts the normal hierarchy because it’s oriented
towards the individual PSW. So, this report lists the most active PSW addresses for this data
capture. You can see that in load module DSNACAF’s csect DSNAPRH had one offset at
X’6E’ that accounted for 23.34 percent of the entire run. You can also see that FOUR Work
Units (APIVPONE, APIVPZRO, IOSVCPPX and IEA0T1000) hit that offset, and each one is
listed.

So, let’s drill down into load module DSNACAF. I'll put the cursor on the “Load Module” field
next to DSNACAF and press Enter. Next, | see Figure 5-17-3 below:

--=/XPF-VERSION B2 -RELEASE B2 MOD LEVEL 04 -BUILD DATE- 605/ /2013 13 .88
COMMAND ==> SCROLL
=/ XPF Report Hierarchy:
Time Segment: 00

DSNAPRH
XK'BE"
3 DSNACAF
Offse X'28666 "'
Executing under Work Unit:
Event type: Program Call
Program call data:
PC number: 0180205
Tetal elapsed time this PC: 61.28:17.3639
Average elapsed time this PC: 0D .00:00.0189
PC info:
A &} 0 0o

Mumber of times observed PC: 465,613

Number of times matched PR/PT to PC: 465,707
Event type: Interrupt
Interrupt type{s) and total counts:

16
4
1
2

Total events this PSW: 931,343
Time of 15T observed event: 09.19.57:29
Tim 1 observed even b B9.36.34:62
< event: 189,185
d event: 4,065,561
HKERKEKEKEKXKXK K K K3 KEXKKXKXK XK [11] oOf D & t 2 3K 3K K K K K KR K K K B K R K R K K K K

Figure 5-17-3.

Here we see a comprehensive display of csect DSNAPRH with the most active PSW offset
at X’6E’, the load module (DSNACAF) that contains it, the location of offset X’6E’ within the
parent module and a WHOLE lot of other pertinent information having to do with it (including
the “PC info” field, the first sixty characters code as a sort of “eye-catcher”). Looks like PC
number 180205 got called here, and this happened 465,613 times. We also see a red field
that indicates that there was a loss of the CPU at this point, because there was an interrupt,
and a dispatch.

[Waxing philosophic for a moment: z/XPF generally either confirms an investigator’s
suspicions about resource consumption or it SURPRISES that person. It's the surprises that
often lead folks to tune their code, and realize greater efficiencies. That's the pay-off.]

DUKESOFTWARE. | 67
5-18 Processor Utilization Statistics

Dave Day has found what we believe to be a TRUE measurement of CPU consumption.
Other profilers measure the frequency with which particular PSWs appear during sampling,
and label this “CPU Consumption”. That’s not really so. It's merely a report of PSWs,which
fails to account for downstream calls from any PSW to other code, or systems services. But
that’s how “CPU Consumption has been sold to the user community for a generation.

Dave Day has figured out a way to measure true CPU Consumption by using an obscure z/
OS control block and the measurement of Timer Interrupts. It's a proprietary technique that
we’ll discuss with our users verbally but at this time don’t care t publish. With that out of the
way, here’s a sample “drill down’ through this new report.

When | ask for Summary Reporting (Option 6 from the Primary Create Profile Menu), and
parse out my report, | am shown all the various Summary Reports available. If | page down,
| can see the entry marked “Processor Utilization Statistics” below, in Figure 5-18-1:

---ZSXPF-¥YERSION 92 -RELEASE @2 -MOD LEVEL 17 -BUILD DATE- 110620913 18.02
comMaAaHD ==: W SCROLL ==>* CSR
event activity at that PSW offzetslocatiaon.

TO0TAL ELAPSED S¥YC TIME BY WORK UNTIT
Will list total elapsed SYC time for all Work Units
by Time Segment.

PROGRAM ChAll ACTIVITY, BY WORK UNTT
Will list total Program Calls observed for all Work
Units by Time Segment.

SELF-INDUCED WATT TIME, BY WORK UNTIT
Includes Wait SYC, Branch enter Wait. Pause, and
Stimer SVYC, for all Work Units by Time Segment.

CONTENTION-THDUCED WATT TIHME BY WORK UNIT
Includes SVYC Eng. ISGENHQ, Lock, Latch, and CPU
contention, for all Work Unit=s, by Time Segment.

MEMORY MANAGEMENT EVENTS BY WORK UNIT
Includes Getmains/Freemain activity., Storage Obtains

Storage Relea=se activity, and IARVYGE4 activity., for
all Work Units, by Time Segment.

DBE2 ACTIVITY, BY SQOL STATEMENT AND WORK UNIT
Includes SQL text, total activity by SOQL statement,
total activituy by DBE2 Csect.

DATASET ACTIVITY
Lists datasets identified during data capture. EXCP
counts are included.

DEVYICE ACTIVITY
Lists activity for Dasd and Tape UCBs. Based upon
Start sub-channel entries in sustem trace.

PROCESSOR UTILIZATION STATISTICS

List=s application usage of processors in total. and
by processor. Work Unit usage of all processors, by
Work Unit, by processor.

kkokkkokkkkkkkokkkokkkkokkkkokkkkkkkkkkk¥kkkBottom OFf Datakkkkkkkkkkkkkkkkkkkkkkkkkkkk

Figure 5-18-1.

| select this choice by either placing the cursor on that line and pressing Enter, or by putting
a “D” next to the “Dril” statement, and I’'m shown the panel in Figure 5-18-2.

68 | z/XPF User's Guide

---z/XPF-YERSION ©2 -RELEASE ©2 -MOD LEVEL 17 -BUILD DATE- 11-06-2013 1§.02
COMMAND ==:> W SCROLL ==3> CSR
Hierarchical drill down for: CPU STATISTICS
Current level of report hierarchy: Time Segment

(HH.HMM.S55:TH)
Segment Begin: 12.23.48:36
Segment End: i2.28.02:35
Segment Elapsed: 20.04,13:99

Application processor utilization statistics, by Time Segment

Total LPAR CPU busy value iz the total elapsed time in the Time
Segment, multiplied by the number of processors in the LPAR, minus
the total wait time for all processors.
(MM.SS:TH.MICS)
Total LPAR CPU busy: 21.06:73.9335
Percent total LPAR CPU busy: 26.27
FRSCIE 4. LT i i - R NS L v o AT L e o v ¢ EFRSPRRRR - 1 PR L e - IR =k R oL

Individual processor CPU busy is the total Time Segment elapsed
minus the processor wait time.

(MM.SS: TH.MICS)
Processor: 08 CPU busy-selapsed time: a1 .06:73.9335
Percent CPU busy this processor: 26.27

Total CPU Timer interrupts, all processors: 1.172
Total application CPU Timer interrupts: 325

Percent of total CPU Timer interrupts: 27.73
T N TS|

Total application CPU busy is the application percent of total

CPU timer interrupts applied to the total LPAR CPU busy time.
({MM.SS: TH.MICS)

Total application CPU busy, all processors: G0.18:01 .9620

Application CPU busy, by processor

Processor: 90 Type: General purpose
Total CPU Timer interrupts, this processor:

Figure 5-18-2.

Figure 5-36 shows overview information for all processors on the system. In our case we
have only one processor which shows as “Processor 00”. So, in my example Individual
processor busy (26.27%) precisely matches “Total LPAR CPU busy time”. At the bottom of
the panel you'll see the toral number of CPU Timer Interrupts for this Time Segment. We
expect that in YOUR environment you’ll see more processors and a good deal more CPU
Timer interrupts.

If | page down from here, I'll see the display shown in Figure 5-18-3 below:

DUKESOFTWARE. | 69

---z/XPF-YERSION ©2 -RELEASE ©2 -MOD LEVEL 17 -BUILD DATE- 11-06-2013 1§.02
COMMAND ==:> W SCROLL ==> CSR
Total application CPU busy: 00.18:01.9620
Percent of total processor CPU busy: 27 .64
RO 3 IR, B it 5 - APab - 1o ERs — ;B 1 o T et © oL e ok

106.00

busy, application generated: 07 .09

Application CPU busy. by Work Unit

Work Unit: XXXCALL Tupe: TASK

Total Work Unit CPU timer interrupts:

Percent of application total CPU timer interrupts:
FEACHE 5, v IR oL SRR MRS 3 o I 2% O = 1L e Nl = AL, TR MOl N M = L. DT S b T s B L]

Work Unit CPU busy, by processor
Processor: @9 CPU busy-elapsed time: 00.,.16:45.7054
Actual percent CPU busy, Work Unit generated: 06.47
= GERS LR e TN sA0s (B0 U8B0 P B el L1Ee
L

Application CPU busy. by Work Unit

Work Unit: XXXCALL Type: TASK

Total Work Unit CPU timer interrupts:

Percent of application total CPU timer interrupts:
Fohe o BRS¢ et I S 1Y et L o MO - SRR 1| o P I B

Work Unit CPU busy, by processor
Processor: 08 CPU busy-selapsed time:
Actual percent CPU busy, Work Unit generated:
T L BTN o s o - R o R = - el — 1 o R - Tt = | o HOR

LESS than 1 percent

Application CPU busy. by Work Unit

Figure 5-18-3.

In Figure 5-18-3 | have a continuation of the “overview” information. Below that | see Work
Units for the Time Segment with the biggest CPU Consumer sorted to the top. In this case, it
is XXXCALL, a Task that used 289 of the 324 Timer Interrupts observed in the Time Segment.
Let’s drill down again, and we’ll see Figure 5-18-4, below:

70 | z/XPF User's Guide

-=-=-z/XPF-VERSION 92 -RELEASE ©2 -HWMOD LEVEL 17 -BUILD DATE- 11-06-2013 18.02
COMMAND ==> SCROLL ==> CSR
z/¥PF Report Hierarchuy:
Time Segment: o1
|]==> Work Unit: XXXCALL

Application processor utilization statistics, by Load HModule

For this report, the total number of interrupts generated by
the Load Module is multiplied by the calculated CPU elapsed
time wvalue for one interrupt. One nterrupt CPU elapsed time
iz calculated by diwv g the Work t CPU elapsed time

by the total number interrupts generated by the Work Unit.

Hierarchical drill down for: CPU Utilization
Current level of report hierarchy: Load Module
Executing under Work Unit: XXXCALL Tupe: TASK
(MM.S5S.TH:MICS)
Total CPU elapsed, this Work Unit: 90.16:45.7054
Total int upt count, this Work Unit: 65. 965
One interrupt CPU elapsed time: 900.00:00.0252

Load Module: XXX1SRYC (MM.SS.TH:MICS)
CPU busuy. ‘pts ID'd within Load Module: 90.09:25.5554
Total interrupt count, this Load Module: 36.593
Percent of Work Unit total Interrupts: 56.24
e e O GER G FE S Ay s VRO B TP B, (O .19

CPU busy., all interrupts: G0 .089:25.5554
actual percent CPU busy, Load module generated: 03 .64

Load Modu : CSAOOS503 (MM .55 . TH:MICS)
CPU busy, inter'pts ID'd within Load Module: 00.04:21.2841
Total int upt count, this Load HModule: 16,656
Percent of Work Unit total Interrupts: 25.59
B MO BN o e - R o [l o = - (IR T c R - SRR - c ey = | TR

CPU busy, all interrupts: G0 .04:21.2841
actual percent CPU busy, Load module generated: 21 .65

Load Module: XXXTFS (MM.SS . TH:MICS)
CPU busy, inter'pts ID'd within Load Module: 00 .01:29.5013
Total interrupt count, this Load Module: 5,129

Figure 5-18-4.

Now z/XPF has dropped me from the Work Unit level to the Load Module Level (just as it
does in all the other Summary Reports. Here | see that Load Module XXX1SRVC generated
36,593 Interrupts (now we’re tracking ALL interrupts not just Timer Interrupts), or 56.24% of
the Work Unit. Let’s drill again, and we’ll see Figure 5-18-5, below:

---z/XPF-YERSION 62 -RELEASE 62 -MOD LEVEL 17
COMMAND ==>
z/¥PF Report Hierarchuy:
Time Segment: o1
|]==> Work Unit: XXXCALL
|]==> Load Module: XXX1SRVC

Application processor utilization stat
C=zect PSW CPU busy is the total number

the PSW offset multipled by the elpased t

for:
hierarchuy:

drill down
of report

~archical
~ent lewvel
Load Module:

i=s Load Module:
of PSW's identified this Load
of PSW' s in is report:
interrupt count, this Csect:

Total CPU elapseq,

X'498"
this PSW:
_PSH'

offset:

pts ID"d at
count, this
Unit total
P N o PR . - R

Load Module PSW

CPU busy. nt
Total interrup
Percent of Work
o R e L RS
PSW generated:

Actual percent CPU busy,

e PSW offset: X'1DE'

inter'pts ID'd at this PSW:
this PSW:
inter
. B8, .

Load Modu
CPU busy.
Total interrupt count,
Percent of Work Unit total

PR 8. IR BT e Sl o G ST B e, A

Actual percent CPU busy, PSW generated:

Load Module PSW offset: X'S572E"’
CPU busy., nter'pts ID'd at this PSW:
Total interrupt count, this PsSW
Percent of Work Unit total

Figure 5-18-5.

Now we’ve arrived at the PSW offset within the csect.

-BUILD DATE-

of

DUKESOFTWARE. | 71

117062013 18.02

SCROLL ==> CSR

istics, by Csect PSW
interrupts ID'd at

ime fo one interrupt.
CPU Utilization
Load Module PS5W
KXX15RYLC
(MM.SS.TH:MICS)
20.09:25.5554

count:
GBI e

~rupt count:
o BRE ok

interrupt count:

Normally, we would have seen a

csect-oriented display before this one, but in this case the code I'm drilling into doesn’t have
a module map, so that level of the report is bypassed. No matter, let’s drill a final time to see

Figure 5-18-6:

72 | z/XPF User's Guide

-=-=-z/XPF-VERSION 92 -RELEASE 062 -HMOD LEVEL -BUILD DATE- 11-06-2013 18.02
COMMAND ==> B SCROLL ==> CSR
z/¥PF Report Hi
Time Segment:
|==> Work Uni
|]==> Load Module: XXX1SRVC

Load Module: KXX13RYC
Dffset of PSW in Load Module X'a9g8"
Executing under Work Unit: XXXCALL
Event type: SVC
SV¥C data:

S¥C number: 60

S¥LC description:] STAE-ESTAE

Total elapsed time this SvYC: .00:11.2884

Average elapsed time this SVYC: .00:00 ., 0006

Humber of times obserwved entry to SYC: 18,591

Mumber of times obserwved exit from SYC: 18,686
Event type: Interrupt
Interrupt typel(s) and total counts:

I/0

Clock Comparator

Task dispatch

Total events this PSW:

Percent of total Csect events:
Percent of total Load Module events:
Percent of total Work Unit events:
Percent of total time segment events:

Time of 1ST observed event:
Time of last observed event:
Event number of 1=t observed event:
Event number of last observed ewvent:
HAEKE KA KKK KA KKK R KKK KA KKK AR KRk Rk Ak Rk Kk %Xk kBottom OFf DatakkkkkkRXREAKERKEKEKERKK KKK KKKEKEK

Figure 5-18-6.

We’ve arrived at the final level of the report, and we can see that at this PSW address a call
has been to SVC 60, the STAE-ESTAE Supervisor call.

So there you have it. z/XPF now gives you what we think is the world’s ONLY TRUE indication
of CPU consumption.

5-19 Option 7: Creating much smaller Time Segments in your report

z/XPF no longer limits the user to only ten Time Segments within a report. Now, using Option
7 you can divide your report into Time Segments with a duration of from 60 seconds down
to one-second durations. Then, you can use z/XPF’s Summary Reporting to isolate by Time
Segment and Drill/Expand within these small Time Segments.

When you select Option 7, you'll see the display below in figure 5-19-1.

DUKESOFTWARE. | 73

-—--z/¥XPF PRIMARY CREATE PROFILE HMENU
OPTION
Enter Option
1) Select source capture dataset to use in report process.
Di=zsplay user comments in selected source capture datasets.
List library contents contained in selected capture dataset.
Free allocated source capture dataset.
Map load modulessdisplay load module maps in selected source dataset.

VYiew profile summary data. Summary =tatistics categorized by
Work Unit, Load Module, Csect, and PSW offset. Includes DB2
statistics if the target acceszed a DB2 =sustem.

View profile summary data specifying Time Segments. Al lows a user
to set a Time Segment as small as one second.

Create a profile detail report. View event data by event type.
Create datasets for FTP process. Creates a compressed dataset to
be downloaded and used by z/ XPF-PC.

Set report BrowsesView, datazset wvol=zer and unit type.

PF3/7END to return to previous panel

Figure 5-19-1.
If you select Option 7, you'll see the panel below, in figure 5-19-2:

---z/KPF

oPTION ===> W
SOURCE ==1>» Z¥XPF.BOB.D19©1513.T165824 . PROFL
Begin time 1=t index wvalue i=s 10.58.30
End time last index wvalue i=s 11.090.27
The default Time Segment interwval is _1 seconds. You may insert any
other walue up to a maximum of 60 smeconds.
¢== Enter any non-blank character here to view total event statistics
using the Time Segment interval setting. From that display you can
z=elect a specific Time Segment to create Summary Report data.

You may also specify an arbitrary begin and end time wvalue below in
HH.MM.S5 format. Using this facility to create Summary Report data
overrides any settings you may have made to the Time Segment interwval
abowve.

Set begin time for profile create.

Set end time for profile create.

<
<

¢== Enter any non-blank character here to create summary statistics
u=szing the =specified begin and end time wvalues.

PF3/END to return to previous panel.

Figure 5-19-2.

This screen is divided into two logical parts: You can either alter the Time Segment values
from 1 second to up to 60 seconds, or you can specify any time period within your report. Be
aware that changes you make in one section of the panel will over-ride choices you make in
the other one. In other words, choose one set of criteria or the other - you can’t have both.

When this choice has been made, z/XPF will process your report and allow you to perform
Summary Reporting on each individual Time Segment (with the maximum value of 60 seconds
down to 1-second Time Segments).

I'll allow a one-second time interval for a z/XPF data capture, and put “S” into the input field
on the top portion of the screen. When | do so, z/XPF parses out my report and shows me
the panel below, in Figure 5-19-3:

74 | z/XPF User's Guide

---z/XPF-YERSIOHN 02 -RELEASE 02 -HMOD LEVEL 15 -BUILD DATE- 10162013 12.
COMMAND ==1> SCROLL ==>»> CSRE
Z/-XPF Time Index Summary Reporting

To view statistics for a specific index period either tab the
cursor to the display line that contains the desired time period,
or use the keyboard's arrow keys to move the cursor. Once the
cursor is positioned correctly, just depress the Enter key. The
percentage value reported i thi=s display i=s= calculated based
upon the total for the entire data capture. Hote however, once
a time period is selected, the percent calculations n those
reports are based upon the total counts contained within the
=elected time period.

Time Index Value = 00 .00.01

Begin Tot Events Percent of Data
55 in Index Capture total

R T T 0 PR o
.2

i
Lo
3
=1
i
5]
1
7
b=
7]
=
T
Lo
=2
=1
ra
=2
7
i
=]
=]
Kl
9

L1 L1L7 [27N (7 (R |11 R e

Figure 5-19-3.

If | cared to, | could page down through the panel to see more of my one-second time
segments until | see “Bottom of Data”, but I'll just select the second time slice (which seems
to have some activity) and press Enter. z/XPF analyzes that one second Time Segment and
shows me a Summary Report panel as below, in Figure 5-19-4:

DUKESOFTWARE. | 75

---z/KPF-YERSION ©2 -RELEASE ©2 -MOD LEVEL 15 -BUILD DATE- 10162013 12 .52
COMMAND ==> SCROLL ==> @SR
z/XPF Profile Summary Reporting
Place your cursor on any report description |ine between the
under-1ined topic heading and the next, then depress the Enter key
to view Summary Report statistics for that category of data.

Report Display MHavigation:
Drill down to next level down in the report
hierarchy.
Drill down to next level down in the report
hierarchy, or Expand on the current data.

Page down to =see all data categories

DATA CATEGORIES BY WORK UNIT WITHIN TIHME SEGHENT

Lists Contention, Wait, SVC elapsed time, Program Call, Memory

Management, and Recovery statistics within a Work Unit, by Work
, Wwithin a Time Segment.

TOTAL EVENTS BY WORK UNIT WITHIN TIME SEGMENT
Same data as above. but different order. Separate

breakout of each Work Unit, within data category.
within the time Segment.

MOST FREQUENTLY OBSERVED PSWA/AINSTRUCTION

Hierarchical organization is slightly different than
other reports. The root of the report hierarchuy is
PSW offset, with a branch for each Work Unit that had
event activity at that PSW offsetslocation.

TOTAL ELAPSED SYC TIHME BY WORK UNIT
Will list total elapsed SVC time for all Work Units
by Time Segment.

PROGERAM CALL ACTIVITY BY WORK UNMIT
Will list total Program Calls observed for all Work
Units by Time Segment

SELF-INDUCED WAIT TIME BY WORK UNMIT
Includes Wait SYC, Branch ter Wait, Pause, and
Stimer SVC, for all Work Units by Time Segment.

Figure 5-19-4.
From this point on, | can drill down or expand as | care to. It’s all right there.

Folks: The rest of these reports function in much the same way, with opportunities for you
to drill or expand categories along the way. So, in an attempt at brevity, I'm going leave
Summary Reporting’s description as it is (or risk doubling the size of this book!). As always
questions and comments are welcome!

76

| z/XPF User’s Guide
5-20 Source Statement Support

As of Release V2R2M24, z/XPF has the ability to show you source statement displays in its
Summary Reporting. Very basically, z/XPF accesses the listing for the selected program(s),
and allows you to see that source code when you are at the PSW level in a Summary Report.
When you do get to the PSW level, you issue the “SOURCE” command from the command
line, or use the “S” command next to any PSW in the display. z/XPF then retrieves the listing
and places it into the report.

Note:

» z/XPF can show source statements ONLY for modules that have Binder maps;
» The association within z/XPF for a source listing is at the csect level.

The first step is to perform your data capture in the normal manner. When you have stopped
the data capture, you then allocate the resulting VSAM dataset, also in the normal fashion.

At this point, it is a good idea to make sure that the modules you are interested in were
mapped during data capture. This step isn’t used to access the source listing. Instead, it
shows whether or not the Binder was successful in mapping your module. Use Option 5 from
the Primary Create Profile Menu to see if the z/XPF mapped the module or not. Here’s an
example of the panel in Figure 5-20-1:

== F I MPT PRIMARY CREATE PROFILE HMEHNU

Enter Option
Select =ource capture dataset to use in report process.
Displag user comments in selected source capture datasets.
List library contents contained in selected capture dataset.
Free allocated source capture dataset.
Map load modulessdisplay load module maps in selected source dataset.

Yiew profile summary data. Summary statistics categorized by

Work Unit, Load Module, Csect, and PSW offset. Includes DB2
statistics if the target accessed a DBE2 system.

View profile summary data specifuing Time Segments. Same reports as
option 6 above, but can set Time Segments as small as one second.

Create a profile detail report. View event data by event type.

Create datasets for FTP process. Creates a compressed dataset to
be downloaded and used by z-XPF-PC.
Set report BrowsesVYiew, dataset wvolser and unit type.

PF3END to return to previous panel

Figure 5-20-1.

DUKESOFTWARE. | 77l intend
to look at the source code for our test program FHCTEST. You can see that it has not been
mapped, due to the message “NOT MAPPED”. See Figure 5-20-2 below:

Figure 5-20-2.

To map the module manually, enter the library that contains the load module, surrounded by
single quotation marks, then press the Enter key. You can see that I've entered the dataset
name below, in Figure 5-20-3:

Figure 5-20-3.

Now, the panel refreshes and you can see that z/XPF accepted the library name in Figure
5-20-4 below:

78 | z/XPF User's Guide

P Row 9
OPTION SCROLL ===

PROFILE SOURCE CAPTURE DATASET

Z¥XPF.BOB.DO031214.T145652 . PROFL
If the module is mapped, the dataset used as input to the mapping
function is displayed. Use character '"M' to select a module for
mapping. You may =pecify a dataset name to use for the map function.
An asterizsk '"*' may be used as a wild card in any qualifier in the name
field. To map the load module using joblibssteplibslink list datasets at
time of capture, leave the source field as is.
‘D' To display a map for a mapped module. "Rt

PF37END TO SAVE MAPPINGS

LM NAME LOAD MODULE SOURCE DATASET NAME YOLSER
FHCTEST CS5W.0A. SYMLINKE CSWOaC
CEEFLPEKA CEE . SCEERUN HDRESZ2
CELHYOO3 SCEERLINZ HDRESZ2
IRXANCHR LINKLTE HDRES1
IRXEFMYS = LIMKLIB HDRES1
IKJEFD3© S5¥51 .CMDLTEB HDRES1
ook ko oo ook ook ook ok sk Bottom of data seoskokokolok ok okook ok b ok ok ok olokok ok okolok ok ok ok kol okokok ok

To delete a map.

Figure 5-20-4.

Of course, if your module has already been mapped you can skip this step, but it's a good
idea to check, just in case it is not.

If you care to, you can enter a “D” next to your module to see the csects, offset addresses
and lengths within it. Here’s an example of the output of the “D” command, in Flgure 5-20-5
below:

---z/XPF

OPTION

Source DSN = CSW.QA.SYMLINKE
Load module = FHCTEST

PF37END TO EXIT

CSECT HNAME BEGIN END LENGTH
OFFSET OFFSET
FHCTESTHC

00000000 20003254 Q0003254
CEESTART

00003258 Q003204 Lelolalololo I i
SUBROUTEH#HC

00eO32D8 Q0RO350C Q0000234
AXDCHOOK

CEERDOTHA
CEEBLLST
CEEBETBL

QD003 6ES Q0003 C28 Q0000540
0DOO3C28 Q0O0O3E18 QOO001FO
00OO3ELS QOOO3EY4 Q0000005 C
QOOO3ETH OOOO3EAQ 00000028
QO0O3EAD 00003 ECA 00000024
0O0O3ECSH Q0OO3FF3 00000128

EDCINPL
CEESGOO3
CEEBPUBT
CEEBTRM
CEEBINT
CEEARLU
CEEBPIRA
CEECPYRT
CEEROND

0O0O3FFG6 00004068 00000070
00004066 20000410C 000000A4
00004110 00004118 200000008
000041186 000041D0O 00000088
000041D0O 200004470 000002A0
00004470 200004552 000000E2
000045586 200004574 20000001C

Figure 5-20-5.

DUKESOFTWARE. | 79 Now Il
use PF3 to navigate back to the Primary Create Profile Menu. [I'll pick Option 6 to look at
Summary Reports. See Figure 5-20-6 below:

PRIMARY CREATE PROFILE HMENU

Enter Option
Select =ource capture dataset to use in report process.
Displag user comments in selected source capture datasets.
List library contents contained in selected capture dataset.
Free allocated source capture dataset.
Map load modulessdisplay load module maps in selected source dataset.

View profile summary data. Summary statistics categorized by

Work Unit, Load Module, C=zsect, and P5W offset. Includes DB2
statistics if the target accessed a DB2 system.

View profile summary data specifying Time Segments. Same reports as
option 6 above, but can set Time Segments as small as one second.

Create a profile detail report. VYiew event data by event type.
Create datasets for FTP process. Creates a compressed dataset to
be downloaded and used by z-/XPF-PC. _

Set report BrowsersView, dataset wvolser and unit type.

PF3/7END to return to previous panel

Figure 5-20-6.

| enter any old character in the top field below the command line. Today | used “X” for the
heck of it. See Figure 5-20-7 below:

= st g WP~

OPTION =
SOURCE = Z¥XPF.BOB.DBG31214.T145652 . PROFL

X Any non-blank character here to enter Summary Report processing.
This is the "trunk' of the hierarchical report tree.

N (Y N) Display a brief narrative on report navigation upon entruy
to profile data. Default is ¥Y(yes).

- ¢{== Change current time segments for report. Any non-blank
character to proceed. Current number of time segments is 01

ag ¢{== Specify the "Top nn criteria” in a report. This is the report
depth. Example: For Work Units, show top ten Work Units. For Load HModules,
show top ten Load Modules, etc. The default is ten (The ten most significan
report elements).

i o (Y M) Create P5W level statistics for all Load Modules. Defaul t
is Y{yes). z/XPF will create P5W level statistics for all Load Modules
Setting this to H will exclude PSW level statistics for all
un-mapped Load Modules.

PF3-EMD to0 return to orevious panel .

Figure 5-20-7.

80 | z/XPF User's Guide

z/XPF goes to work parsing the report. The line of yellow asterisks cruises across the page
to completion. If your report is a large one (one million records or more), you may as well find
something else to do. See Figure 5-20-8 below:

- ——z/XPF
TOTAL NUMBER OF RECORDS TO PROCESS 320,157
TOTAL PROCESSED 12,804

Percent complete 63 .99

e

b &
Process start time
Current time

Elapsed since process

Figure 5-20-8.

Now,we arrive at the top panel in our Summary Report. See Figure 5-20-9 below:

--—-z/XPF-YERSION 02 -RELEASE ©2 -MOD LEVEL 24 -BUILD DATE- 603-06-2014 68.15
COMHMAMD == SCROLL == CS5R

z/XPF Profile Summary Reporting

Place your cursor on any report description |line between the

under-1ined topic heading and the next, then depress the Enter key

to view Summary Report statistics for that category of data.

Report Display Havigation:
Drill down to next level down in the report
rarchy.
Il down to next level down 7 the report
hierarchy. or Expand on the current data.

Page down to see all data categories

DATA CATEGORIES, BY WORK UNIT, WITHIN TIME SEGMENT
Lists Contention, Wait, S¥C elapsed time, Program Call, HMemory
Management, and Recovery statistics within a Work Unit, by Work

Unit, within a Time Segment.

TOTAL EVENTS BY WORK UMIT, WITHIN TIME SEGMENT
Same data as above, but different order. Separate
breakout of each Work Unit, within data category.

within the time Segment.

HMOST FREQUENTLY OBSERVED PSWA/INSTRUCTION

Hierarchical organization 18 slightily di fferent than
other reports, The root of the report hierarchy is
P5SW offset, with a branch for each Work Unit that had
event activity at that PSW offsetslocation.

CPU COMSUMPTION STATISTICS
CPU consumption in total, and by indiviqual processor.
Work Unit usage of all CPUs, by Work Unit, by CPU

TOTAL ELAPSED SYC TIME, BY WORK UNIT
Will 1Tist total elapsed 5¥C time for all Work Units
by Time Segment.

PROGERAM CALL ACTIVITY, BY WORK UNIT
Will li=st total Program Call=s ob=served for all Work

Units by Time Segment.

Figure 5-20-9.

DUKESOFTWARE. | 81
Now for the fun part!

In this example, the program FHCTEST really doesn’t “do” much. What I've done here is
run z/XDC against FHCTEST, which means that z/XDC actually did almost all the work and
minimal time was spent executing FHCTEST. I'll drill into CPU Consumption Statistics. See
Figure 5-20-10 below:

-—--z/XPF-VYERSION 02 -RELEASE 02 -MOD LEVEL 24 -BUILD DATE- 03-/06-2014 08.15
COMHMAMD == SCROLL == CSR
z/¥%XPF Profile Summary Reporting
Place your cursor on any report description |line between the
under-lined topic heading and the next, then depress the Enter keuy
to view Summary Report s=tatistics for that category of data.

Report Display Navigation:
D I down to next level down in the report
archy.
I down to next level down in the report
hierarchy, or Expand on the current data.

Page down to =s=ee all data categories

DATA CATEGORIES, BY WORK UHNHIT, WITHINH TIME SEGHMEHT
Lists Contention, Wait, SVC elapsed time, Program Call, Memory

Management, and Recovery statistics within a Work Unit, by Work
Unit, within a Time Segment.

TOTAL EVENTS BY WORK UNIT, WITHINM TIME SEGMENT
Same data as abowve, but di fferent order. Separate
breakout of each Work Unit, within data category.,

within the time Segment.

MOST FREQUENTLY OBSERVED PSW/ THNSTRUCTION

Hierarchical organization is slightly different than
other reports. The root of the report hierarchy is
PSW offset, with a branch for each Work Unit that had
event activity at that PSW offsetslocation.

CPU CONSUMPTION STATISTICS
CPU consumption in total, and by individual processor.
Work Unit usage of all CPU=s, by Work Unit, by

Figure 5-20-10.

82 | z/XPF User's Guide

And we arrive here. z/XPF begins by telling me information on the LPAR and CPU busy
statistics. See Figure 5-20-11 below:

---zZ/XPF-VERSION 92 -RELEASE ©2 -MOD LEY¥EL 24 -BUILD DATE- 03062014 68.15
COMMAND == SCROLL ==>»> CSR
Hierarchical drill down for: CPU STATISTICS
Current level of report hierarchy: Time Segment

(HH.MM.55:
Segment Begin: 14.56.52 ;1
Segment End: 14.59.22:
Segment Elapsed: 00.02.29:

Appl ication processor utilization statistics, by Time Segment

Total LPAR CPU busy wvalue iz the total elapsed tlme in the Time
Segment., multlplled by the number of processors in the LPAR, minus
the total wait time for all processors. Note that the wvalue
produced by thlS cnmputatlnn will include time the processor was
not awvailable in this LPAR due to PR/SHM dlspatchlng the processor to
another LPAR. The statistics produced in this and subsequent drill-
down reports cannot be taken as absolute values. Theuy are intended
to be uszed a=s relative indicators

(MM.SS:TH.MICS)

Total LPAR CPU busy: 00.35:76.9601

Percent total LPAR CPU busy: 23.97
PR - Rk i g Lo N - Sl 1 R - | T - S - o e = L e L]

Individual processor CPU busy iz the total Time Segment elapsed
minus the processor wait time.

(MM.S5: TH.MICS)
Processor: 00 CPU busy-selapsed time: 09 .,35: 76,9801
Percent CPU busy this processor: 23.97

Total CPU Timer interrupts, all processors: 196
Total application CPU Timer inte : 165
Percent of total CPU Timer inte : 84.18

Total appllcatlun CPU busy iz the application percent of total

CPU timer interrupts applied to the total LPAR CPU busy time.
(MM.55: TH.HICS)

Total application CPU busy, all processors: 00.,.30:04.6633

Figure 5-20-11.

DUKESOFTWARE. | 83

However, the panel above isn’t what I’'m interested in now. So, | page down to the Work Unit
XXXCALL”. This is where I'll eventually find FHCTEST. See Figure 5-20-12 below. | drill
here...

---z/¥PF-¥YERSION 02 -RELEASE 92 -MOD LEYEL 24 -BUILD DATE- ©3-96-2014 08.15
COMMAND == SCROLL == CSR

Application CPU busy, by processor

Proces=szor: 00 Type: General purpose

Total CPU Timer interrupts, this processor: 165
(MM.SS:TH.MICS)

Total application CPU busy: 00.30:04.6633

Percent of total processor CPU busy: 84.18

vss«19...88.,.38,..48...58,..68...79...80...96.,,108

Percent of total application CPU busy: 160.00

Actual Eercent CPU busy. application generated: 20.14

Application CPU busy, by Work Unit

Work Unit: XXXCALL Type: TASK
Total Work Unit CPU timer |nterrupts
Percent of appllcatlun total CPU timer interrupts:
. 1@,..86,..36..,. .48, . .50,...80,..76., .86, ,.99.,.160

Work Unit CPU bu=sy, by processor
Processor: 00 CPU busy-elapsed time: 00.28:46.9842
Actual percent CPU busy, Work Unit generated: 19.068
PRI R R R i SR T R BT - PR - G LG

Figure 5-20-12.

And | arrive at the display of the load modules that were part of the Work Unit. | issue a
“FIND” for FHCTEST. See Figure 5-20-13:

-—--z/XPF-VERSION 62 -RELEASE &2 -MOD LEVEL 24 -BUILD DATE- 637062014
COMMAND ==> F FHCTESTH SCROLL ==3» CSR
Z/XPF Report Hierarchy:
Time Segment: ©1
|]==» Work Unit: XXXCALL

Appl ication processor utilization statistics, by Load Module

For this report., the total number of interrupts generated by
the Load Module is multlplled by the calculated CPU elapsed
time value for one |nterrupt One |nterrupt CPU elapsed time
iz calculated by d|U|d|ng the Work Unit CPU elapsed time

by the total number of interrupts generated by the Work Unit.

Hierarchical drill down for: CPU Utilization

Current level of report hierarchy: Load Module

Executing under Work Unit: XXXCALL Type: TASK
(MM.55.TH:MICS)

Total CPU elapsed, this Work Unit: Q0.28:46.9842
Total interrupt count, this Work Unit: 49,401
One interrupt CPU Elapsed time: 00.,.00:00,0576

Load Module: XXX1SRVC (MM.SS.TH:MICS)

CPU busy. nter'pts ID'd within Load Module: 00.15:52.7271

Total interrupt count, this Load Module: 26,943

Percent of Work Unit total Interrupts: 54.53
100089, .38 A8 198N ER L ERL . JBe. o890, . 1S

CPﬂ busg, all interrupts: 00.15:52.7271
Actual percent CPU busy., Load module generated: 10.40
[

Figure 5-20-13.

84

| z/XPF User’s Guide

And there itis. You can tell that FHCTEST wasn’t doing very much, can’t you? See that | am
“drilling” into the load module FHCTEST, in Figure 5-20-14 below:

-——-z/¥XPF-VYERSIOHN 02 -RELEASE 02 -MOD LEY¥EL 24 -BUILD DATE- 037062014 08.15
COMMAND ==3 SCROLL ==» CSR
z.¥XPF Report Hierarchuy:
Time Segment: 01
|]==2 Work Unit: XXXCALL
]==» Load Module: FHCTEST

Appl ication processor utilization statistics, by Csect

Czect CPU busy iz the percentage of the Load Module's
interrupt count for the Csect applied to the Load Module's
CPU busy time

Hierarchical drill down for: CPU Utilization
Current level of report hierarchy: Csect
Load Module: FHCTEST

(MM.S5.TH:MICS)

Total CPU elapsed, this Load Module: 00.00:064.7832
Humber of Csects chained to this Load Module: 3
Humber of Csects in this report: 3
Total interrupt count, this Load Module: 83

C=zect: FHCTESTHC

(MM.SS. TH:MICS)
CPU busy, inter'pts ID'd within this C=sect: 00.00:03.3425
Total interrupt count, this Csect 58
Percent of Work Unit total interr t count: G0.11
ca @y . BE, 30, A8 S8 B8, (L FOBe 8. 108

Actual percent CPU busy. Cszect generated: 00,02
Lezs=s than 1 percent

Figure 5-20-14.

| arrive at the display of all csects within the FHCTEST module. | pick one at random, and
drill into it: See Figure 5-20-15 below:

-——z/¥XPF-VERSION 02 -RELEASE 92 -HMOD LEVYEL 24 -BUILD DATE- 03-06/.2014 08.15
COMMAND ==> SCROLL ==> CSR
z/¥PF Report Hierarchuy:
Time Segment: 91
|]==2» Work Unit: XXXCALL
l==» Load Module: FHCTEST
|]==> Csect: FHCTESTHC

Appl ication processor utilization statistics, by Csect PSW

Czect PSW CPU busy iz the total number of interrupts ID'd at
the PSW offset multipled by the elpased time for one interrupt.

Hierarchical drill down for: CPU Utilization
Current level of report hierarchuy: Csect PSW
Csect: FHCTESTHC

(MM .SS.TH:MICS)
Total CPU elapsed, this Csect: 00.6060:63.3425
Humber of PS5W's identified this Csect: 58
Humber of PSW's in this report: 58
Total interrupt count, this C=sect: 58

C=zect PSW offset: X'29E" i (MM.S55 . TH:MICS)
CPU busy, Iinter'pts ID'Ad at this PSW: 00.00:01.3254
Total interrupt count, this PSW: 23

Percent of Work Unit total interrupt count: Q0,049
cia A9 29 38, A48, (B8, , BB, .78, B8,] v e 100

Actual percent CPU busy. P5SW generated: 00 .00
Less than 1 percent

Figure 5-20-15.

DUKESOFTWARE. | 85

Here is the display of PSWs within the FHCTEST#C Csect. It's nice that z/XPF “tracks” the
depth of your inquiry at the top of the panel, isn't it?

At this point | can invoke the SOURCE command (which will have the effect of showing you
the PSW that appears first in the display). | can issue the SOURCE command or | can put
an “S” next to any Csect PSW offset. See Figure 5-20-16 below:

-——z/"XPF-¥YERS5ION 02 -RELEASE 2 -HMOD LE¥EL 24 -BUILD DATE- 03062014 08.15
COMMAND ==3 SCROLL ==»* C5R
z/¥PF Report Hierarchuy:
Time Segment: 01
|]==>» Work Unit: XXXCALL
l==» Load Module: FHCTEST
|]==» Csect: FHCTESTHC

Application processor utilization statistics, by Csect P3SW

Csect PSW CPU busy is the total number of interrupts ID'Ad at
the PSW offset multipled by the elpased time for one interrupt.

Hierarchical drill down for: CPU Utilization
Current level of report hierarchuy: Czect PSW

C=zect: FHCTESTHC
(MM.SS.TH:MICS)

Total CPU elapsed, this Csect: 00.00:03.3425

Mumber of PSW's identified this Csect: 58

Humber of PSW's in this report:

Total interrupt count, this Csect:

C=z=ect PSW off=et: X'29E" (MM.SS.TH:MICS)
CPU busy, Iinter"pt=s ID'd at thi=z P5W: 00.00:01.3254
Total interrupt count, this PSW:

Percent of Work Unit total interrupt count:
i 19, 29,389, ,.486,, .59, , .68, ..70. ., 86. .98, ..1086

Actual percent CPU busy. PS5SW generated:
Less than 1 percent

Figure 5-20-16.

Now | have to tell zZXPF where the listing can be found, and what language z/XPF should
expect to find. You'll only have to do this one time for each csect within a load module map,
because once you associate a listing with your csect, z/XPF “remembers” that association
and won’t prompt you for this information the next time you access the report. On the other
hand, if the same csect is linked into other modules, then z/XPF WILL prompt you the next
time you try to see the source code. Sere Figure 5-20-17 below:

- -~ 2/ XPF
OPTION

Specifu dataset name for source listing.
"'bob.download. fhctest'

Load Module name. FHCTEST
Load Module offset 00029E
¥ «<== Use Load Module offset for search. (Y- N)

Czsect name.
FHCTESTHC
Czect offset 00029E
H <== Use Csect offset for search. (¥/H)

Hame to use for member search. Overtype with correct name i+
not correct. Ignore if dataset is sequential (DSORG=PS).
FHCTEST

ﬁet listing type. ASM, COB,Cl{use C for both C and C)
CH_

Figure 5-20-17.

86 | z/XPF User's Guide

Voila! You see the source code! The PSW that | put the “S” next to in the Summary Report
panel is displayed in red, in Figure 5-20-18 below:

-——-z/¥XPF-YERSION 02 -RELEASE ©2 -MOD LEVYEL 24 -BUILD DATE- 93062014 08.15 ---
COMMANMD ==3 SCROLL == CSR

006291 * s/ =ize of CHUNK_SIZE bytes or |

aeo292 * s |f (Sgscnnf(sC PHGESIZE) ;TS 4

5694A01 V1 .13 .0A.SOURCE(FHCTEST)': st

OFFSET OBJECT LINEH FILEH P S EUDO AS SEMBLY L IS

000293 s return 9:;
000294
0002495 memset(u, 1, =sizeofi(struct stuff
000268 000295 EX ro,HOOK . .STHT
Q0026C] 1 200295 LY r6,ul,r4,116836)
000272] 1 200295 STY r6,Huwtemp_5(,.r4,116
000278] 206295 S5TY r6,HSTRTEMPG(,r4,1
0062 7E L] 006295 MV I HAddressShadow(r6,
20282 200295 LA re,383
200286] 1 200295 STY r6. HSTRTEMPEG(. r4, 1
20028C 200295 STY ro,4STRTEMPEG(,r4,1
00292 200295] DS oH
2000292] 1 200295 LY r6,HSTRTEMPG(., r4, 1
~4, 1
ow(
4,1

=]
1
o)
1
1
i
1

000298 000295 LY ro,HSTRTEMPG(,

002A4]] 00295 LA r6, HAddressShad

002A8] 1 00295 STY r6, HSTRTEMPG(,

Q002AE 2000295 LR ré,ro

200280 200295 AHI . HI=1"

2000284 200295 STY r7,HSTRTEMPE(,r4,11

20028A] 200295 BRCT re, B6L72

Q0O028E]] 200295 MVYC HAddressShadow(255,
QOO296 u->ci[el = "xAA';

QOe2C4a QOO296 EX ro,HOOK. .STMT

QOO2CaE] 3 QOO296 LY r6,ul,.rd4,116836)

0002CE] 00296 MVIY (¥)stuff.stuff.[10(
00297 u-xc2lfol "“xBB" ;

000204 00297 EX ro,HOOK. .STHMT

00208] 1 00297 LY r6,ul,.rd4,116836)

OO2DE] 00297 My IY (%)stuff.stuff.[11(
00298 u->c3lfe] "“xCC°* ;

QOO2E4 9000298 EX ro,HOOK . .5TMT

Q0O02ES] 1 200298 LY r6,ul,rd4,116836)

QOO2EE] 200298 MVIY (¥)stuff.stuff.[12(
200299

i

Figure 5-20-18.

You are looking both at the source statements, and the object code that executes on the
behalf of each statement. Pretty cool!

* You can page up or down in the display.

* If you wish to return to your PSW, you issue “PSW” on the command line, and z/XPF
takes you back to that PSW.

* You can also issue PF3 to “back out”, and explore another PSW if you like.

There you have it: z/XPF allows you to see your source code!

DUKESOFTWARE. | 87

Chapter 6 - Creating DB2-Specific Summary Reports

z/XPF is able to profile DB2 address spaces. This sub-section of the book will discuss how
to do that, and what you’ll see in z/XPF’s Summary Reports.

Here is some program logic information on DB2 and z/XPF:

During z/XPF server address space initialization, all defined DB2 systems on the z/OS image
are identified. After identification of the DB2 sub-system name, a check is made to determine
which, if any, are active. For those active, all of the address spaces associated with the sub-
system are identified. z/XPF refers to these as “address spaces of interest”. In addition, for
each active DB2 system, a copy of the MEPL is made.

z/XPF’s SMF exits for exit points IEFUSI and IEFACTRT (established during initialization)
inform the z/XPF address space when DB2 address spaces initiate and terminate.

During data capture, z/XPF checks the event to determine if the event occurred while
executing DB2 code. The PASN value for the event is checked against the list of known DB2
address space ids if the PASN is not equal to the HASN.

Part of the early processing logic for an SQL statement executes a space-switch Program
Call that makes the PASN value equal to the ASID value of the DB2 DBM1 sub-system
address space.

z/XPF marks the event as a DB2 event when either the PASN value for the event is equal to
one of the DB2 sub-system address space ids OR when the load module is identified and the
first three characters of the load module name begin with “DSN”.

If either one of these conditions is met, a look inside the target profile address space is made
to locate connection information for the Work Unit. If the Work Unit is connected to DB2,
a further check is made to identify the DBRM and DBRM Section currently active on the
connection.

DB2 activity is summarized within z/XPF first by DBRM and Section, and then by dynamic
SQL text, if dynamic SQL was observed during data capture. A breakout by Work Unit within
DBRM is given in the Segment Summary report. This view informs the user which DBRMs
had the most activity across all Work Units, and which Work Units were active using the
DBRM.

The same statistics are available for SQL text. SQL text Activity is reported by the text
statement, and then by Work Unit within text statement.

6-1 How z/XPF Uses DB2 Catalog Information

During data capture, z/XPF identifies DBRMs that were used to access DB2 by the target

88 | z/XPF User's Guide
application. At data capture termination, z/XPF does the following for each DBRM it identified:

Using the DBRM name, DB2 catalog table SYSIBM.SYSPACKAGE is queried to determine
if the DBRM is bound as a DB2 package.

When the DBRM is found in SYSIBM.SYSPACKAGE, the following fields are pulled from the
table:

+ COLLID

+ OWNER

+ TIMESTAMP
+ BINDTIME

+ QUALIFIER
+ ISOLATION
+ EXPLAIN

+ REOPTVAR
« TYPE

+ PDSNAME

+ PCTIMESTAMP

The SYSIBM.SYSPACKDEP table records the dependencies of packages on local tables,
views, synonyms, table spaces, indexes, aliases, functions, and stored procedures.

Also, SYSIBM.SYSPACKDERP is queried for the following :

+ BNAME
+ BQUALIFIER
« BTYPE

When no entry is found in SYSIBM.SYSPACKAGE, SYSIBM.SYSPLAN is queried using the
DBRM name.

The SYSIBM.SYSPLANDEP table records the dependencies of plans on tables, views,
aliases, synonyms, table spaces, indexes, functions, and stored procedures.

SYSIBM.SYSPLAN is queried for the following:

+ CREATOR
+ ISOLATION
+ EXPLAN

* QUALIFIER
+ BOUNDTS
+ REOPTVAR

Also, SYSIBM.SYSPLANDEP is queried for:

DUKESOFTWARE. | 89

+ BNAME
+ BCREATOR
« BTYPE

For more information on DB2, you can consult the IBM Manual, “The DB2 SQL Reference
Manual (SC19-2983)”.

6-2 Accessing z/XPF’s DB2 Summary Reports.

When you have created a z/XPF data capture dataset for Summary reporting, you can page
down to the topic, “DB2 ACTIVITY, BY SQL STATEMENT AND WORK UNIT”. Here is a
picture of that “tab” in the report. I’'m ready to press Enter to look at the report. See Figure
6-1 below:

---z/XPF-YERSION 02 -RELEASE ©2 -MOD LEVEL 15 -BUILD DATE- 10162013 12.52
coMMAND ==> W SCROLL ==> CSR

MOST FREQUENTLY OBSERYED PSW/oTNSTRUCTION

Hierarchical organization is slightly different than
other reports. The root of the report hierarchy is
PSW offset, with a branch for each Work Unit that had
event activity at that PSW offsets/location.

TOTAL ELAPSED SY¥C TIHME BY WOREK UNIT
Will list total elapsed SVYC time for all Work Units
by Time Segment.

PROGRAM CAlLL ACTIVITY BY WORK UNIT
Will list total Program Calls observed for all Work
Units by Time Segment

SELF-INDUCED WATT TIME, BY WORK UNIT
Includes Wait SYC, Branch enter Wait, Pause, and
Stimer SVC, for all Work Units by Time Segment.

CONTENTION-THDUCED WAIT TIHME BY WORK UNIT
Includes SVYC Eng. ISGENO, Lock. Latch, and CPU
contention, for all Work Unit=s, by Time Segment

MEMORY HMANAGEMENT EVYENTS BY WORK UNIT

Includes GetmainsFreemain activity, Storage Obtains
Storage Release activitu., and IARVYG64 activity. for
all Work Units, by Time Segment

DB2 ACTIVYITY,., BY SOL STATEMENT AND WORK UNIT
Includes SQL text, total activity by SOL statement.
total activity by DB2 Csect.

DATASET ACTIVITY
Lizsts datasets identified during data capture. EXCP
counts are included

DEVICE ACTIVITY
Lizts activity for Dasd and Tape UCBs. Based upon
Start sub-channel entries in system trace.

Figure 6-2-1.

So, let’s drill into DB2 Activity. | press Enter and see Figure 6-2-2 below:

90 | z/XPF User's Guide

-=-=-Z/KPF-VERSION 92 -RELEASE 62 -MOD LEYEL 24 -BUILD DATE- 83062014 03.15
COMMAND ==> N SCROLL ==> CSR
Hierarchical drill down for: DB2 data
Current level of report hierarchy: Time Segment
This is the base of the report hierarchuy
Mumber of Time Segments defined: 1
z/¥PF summarizes DB2 activity in three distinct categories.

1) =18] dynamic S0l Statement
Within each unique S0QL =statement, event counts are summarized
by db2 csect.

2) By DBRM(Database Resource Manager) i g
A DERM iIis the output of the pre-compile step, and is the Iinput
in the Bind process, DBRM's are sub-divided into sections,

where each section usually a unique SQL statement. =z XPF
summari zes DB2 act ty by DBRM, with a further breakout by
Czect within =section

3) By Work Unit
U=e these reports to view which Work Units were the most active
within DB2.

z/XPF DB2 Statistcs. by Time Segment

(HH.MM .55 : TH)
Segment Begin: 07.46.43:25
Segment End: 07.59.12:91
Segment Elapsed: 06.12.29:65
Total DB2 eventzs thiz Time Segment: 2.164.210
Percent of total DB2 events., all segments: 100.00
R o e 1« e | R = C e - o e W~ T~ | - (I o Lo

Dynamic SOL text. YView statement text. total event counts, and
C=sect event counts
Static SQgL text. View =tatement text, total event counts, and
Czect event counts=. DBRM planspackage information
By Work Unit. VYiew data by Work unit, nd DBRM within Work Unit.
Statistics are broken out by Work Unit.
28 28 e A o o e ek R i ok ok ke ke ok ook ok ok ok ok koo ok ok k kk ok Rk kBo t tom OF Da Tt 3 sk sk b b koo sk sk sk e ke e ook kool ok sodok ko ko ok ook

Figure 6-2-2.

There are three actions | can perform here. | can see dynamic SQL statements, static SQL
statements and look at DB2’s activity by the Work Unit.

First things first, | suppose. Let’'s pick Dynamic SQL. Ill tab to the first “DrEx” area on the
screen and press Enter (for a drill operation). Now | see Figure 6-2-3, below:

DUKESOFTWARE. | 91

/" XPF-VERSIOHN ©2 -RELEARSE 92 -MOD LEYVEL 24 -BUILD DATE- ©3-06-.2014 68.15
COMMANMD [] SCROLL == CSR
z/%XPF Report Hierarchy:
Time Segment: 01

Hierarchical drill down for: Dynamic SOL activity
Current level of report hierarchy: Time Segment
Thi=s i=s the base of the report hierarchy

Humber of dynamic SQL statements obserwved: 4
DB2 actiwvity, by dynamic S0l statement

When the length of the text statement is greater than 4 display
lines, the entire_ text may be viewed by placing the cursor on
one of the text display |1ines, and depressing the enter key.
Length of SOL text: 49 Length displauyed: 49

INSERT INTO DADOOE1.ASMSRCON VALUES(?,7.7.7.7.7)

First observed activity. this statement: 07.48.46:35.6414

Last observed actiwvity, tt statement: 07.49.24:21 .9401
Humber of C=sects with activity this statement: 66
Total events this SOL statement: 981,895
Percent of time segment total DBZ2 events: 45 .36
Lo LB RE, 0D TAEL 5L 88, L T B

Percent of time segment total events: 24.72

Length of SOL text: 56 Length displayed: 56
INSERT INTO DADOOO1.ASMSRCZR VALUES (7, 7, 7, ?. 7. ?)

First obserwved activity. this statement: 07.48.46:33.7204
Last observed actiwvituy., tt statement: 07.53.24:05.7454
Humber of Cszects with act ty thizs =tatement: 26
Total eventzs thizs S50L =tatement:

Percent of time =egment total DBZ2 events:
saa 1€, 28, d8, 98, , 50 .6G,..79...89...96...1006

Figure 6-2-3.
In Figure 6-3 you can see “orientation” information in yellow, then the first of five SQL
statements, along with statistics on each one. Just for the heck of it, let’s drill again into the
first SQL statement and see what we get.

Now | have the panel in Figure 6-2-4 below:

92 | z/XPF User’s Guide

---Z/XPF-¥ERSION 02 -RELEASE 92 -MOD LE¥EL 24 -BUILD DATE- 03062014 08.15
COMMAND ==> W SCROLL ==> CS5R

Csect name: DSNHISGRT

DSNWHMODS = DSHISGRT READ AWHD TEST A SEGMENTED DATA PAGE

Total event=s this C=sect: 463,900

Percent of total text statement events: 47 .24
Jige. . 208, 8. . . 98, 38, B&...T8.. . 80... 98, . .1006

Percent of total Time Segment DB2 events: 21.43

Percent of total Time Segment events: 11 .68

Csect name: DSHISGSU
DSNMWHMODS = DSHISGSU UPDATE SEGMENTED SPACE HMAP PAGE
Total events this C=sect: 35.766
Percent of total text statement events: 33 .64
e s 1@ 29, ,36,...49,,.:56.. .89, ,.,70.,..80.,.90...1906

Percent of total Time Segment DB2 events: 91.65

Percent of total Time Segment events: 00 .906
Less than 1 percent

Csect name: DSHISRTI
DSHWHMODS = DSHISRTI INSERT POSSIBLY CONMWNECT RECORD
Total events this C=sect 12,370
Percent of total text statement events: 21.25
cea A BG A8 48, 2. B8, . T80 8D, B0 10D

Percent of total Time Segment DB2 events: 00 .57
Less than 1 percent
Percent of total Time Segment events: 200.31
Less than 1 percent

Csect name: DSHB1GET

DSHWMODS = DSHMB1GET RETRIEVE REQUESTED PAGE

Total events this Csect: 3,322

Percent of total text statement events: G6.33
1@y 800 3B 0. 88 B0 T BD

Percent of total Time Segment DBZ2 events: 00.15

Figure 6-2-4.
In Figure 6-4 above, z/XPF has sorted the actions within each DB2 csect from most-active to
least active and tells us what each DB2 csect’s function is. Data capture picked up 463,900
events with instruction addresses that mapped to that DB2 SQL statement.

Let’s pick “Door #2”, “Static SQL text”. I'll back out from here using PF3 and will arrive back
at the panel in Figure 6-2. I'll select “Static SQL Text” and will drill down.

| arrive at the panel below, in Figure 6-2-5:

DUKESOFTWARE. | 93

--—-z/XPF-¥YERSION 02 -RELEASE ©2 -MOD LEVYEL 24 -BUILD DATE- 03-96-.2014 08.15
COMMAND == SCROLL ==» CSR
Hierarchical drill down for: DERM data
Current level of report hierarchg: Time Segment
This is the base of the report hierarchy

If package information is awvailable for a DBRM, there will be
a display line that states it i=s available. To view this
information, use either a drill down or an expand function

on that line in the disply. Both functions create the same
display, in this case. When S0QL text i=s awvailable, there

will be display lines within the Section data that contain

the text up to a max of 4 lines on the display. When the text
exceeds 4 display lines, a drill down and expand function is
provided. Use eilther function to view the entire SQL text.

To view DBH2 Csects that had event activity, use the drill down
or the expand function on the display |line that contains the
number of Csects for the statement.

DB2 =tatistics, by DBRM, in descending order by event count

Mumber of DBRM'S with data: 1
DBRM name: APIVP Total events this DBRM: 2,164,210
Percent of Time Segment total DB2 events: 100.00
PR o . = SRS = - B HES . PO AT L+ M o =+ R T L= &« [V R TRI o S PO R =, S M e L o S S I T & L2

Percent of Time Segment total ewvents: 54 .49

er of sections with data: 26
SOUrCcCe: APF1 .vV100.DBRMLIB.DATA
M pre-compile timestamp: 2012-12-26-15.35.19.817233
Plan name opened on connection: APIVP
SYSIBM.SYSPACKAGE information awvailable.

Use drill down or expand function to view.

Connected to DBZ2 system: DBAG
Connection name: DBZ2CALL
Connection type: BATCH

Statement type: ©QO0OF EXECUTE _
Section nbr(dec): 29 Section nbr(hex): 001D
Precompile statement number: 4,088

Figure 6-2-5.

Most of the panels I've shown so far have much more going on than a single page of display.
The panel in Figure 6-5 is just the start of what you may display. Let’s locate the cursor on
“‘SYSIBM.SYSPACKAGE”, page down and re-orient the panel, in Figure 6-2-6:

94 | z/XPF User's Guide

---z/XPF-VYERSION ©2 -RELEASE ©2 -MOD LEVEL 24 -BUILD DATE- 03062014 08.15 ---
coMMAND ==> N SCROLL ==> CSR
S¥STIBM.SYSPACKAGE information available.
Use drill down or expand function to view.
Connected to DBZ2 system: DBALG
Connection name: DB2CALL
Connection type: BATCH

Statement type: 0O00OF EXECUTE
Section nbri{dec): 29 Section nbr(hex): 001D
Precompile statement number:

Total events this statement: 1,961,675
Percent of DBRM total events: 90.64
[e B, S~ s b - I © o RN = N L IR, - PR - b AT .. 100

Percent of Time Segment total DEZ2 events: 90.649

Percent of Time Segment total events: 49,39

Nbr of DB2 Csects with activity, this statement: 4z
Use drill down or expand function to view.

Statement type: OQOES DELETE

Section nbridec): 33 Section nbr(hex): 0621

Precompile statement number: 3.767

DELETE FROM DADGOO1 . ASMSRCZR WHERE OPCODE = "LALAL' AND STHTHAME = "D
YESTHMT*

Total events this statement: 30,344

DBRM total ewvents: 91 .40

Va3 88y B0 G e A B

Percent of
vy oe o 1@ 2

Percent of Time Segment total DB2 events: 91 .46

Percent of Time Segment total events: 00.76
Less than 1 percent

HNbr of DB2 Csects with activity, this statement: 27
Use drill down or expand function to view.

Statement type: OOES DELETE

Figure 6-2-6.

In the Figure above, | can see that SYSIBM.SYSPACKAGE had 1,961,675 events which took
up 90.64% of the total DB2 events, and 49.39% of the total events for the Time Segment of
this report (there’s only one Time Segment defined).

Let’s drill into SYSIBM.SYSPACKAGE, and see what we get. Here’s the result, in Figure 6-6
below:

The life of a technical writer is a perplexing one. One attempts to find the right balance of
helpfulness, clarity and completeness without revealing one’s near-total ignorance of the
subject matter. Dave Day swears that the panel above in Figure 5-44 will be instantly useful
to any DB2-oriented person. May it be so.

Let’s try “Door #3” from Figure 6-2. This time we’ll drill down into “By Work Unit”. | tab down
to that item and drill down to arrive at the panel below, in Figure 6-2-7:

DUKESOFTWARE. |

-—-z/¥PF-¥YERSION 02 -RELEASE 02 -MOD LEVEL 24
COMMAND ==> H

Hierarchical
Current level
Package name:
Collection ID:
Owner:
Implicit Qualifier:
Creator:
Time package created:
Time package Bound:
C=zect with DBRM name
Load Library:
Izolation level at last Bind:
Release walue at last Bind:
Explain option specified for package:
Reoptwvar wvalue:

PACKAGE DEPENDENCY INFORMATION

-BUILD DATE-
SCRO

drill down for:
of report hierarchy:

Load Module:
APF1
HOT
HOT

identified in

HOT

Total number of dependency records:
TABLE SPACE

DATABASE

TABLE SPACE

DATABASE

TABLE

AUTHORIZATION ID OF OWHER

TABLE

AUTHORIZATION ID OF OWHER

ek kR kkk kR ko kkkkkkkkkkkkkkBottom OFf Datakkkkkkkkdkkkkkkkkkkkkkkkikk

Figure 6-2-7.

Let’s try Door #3 now. I'll use PF3 to back out to the panel in Figure 6-2, and I'll drill into “By

Work Unit”. | arrive at the panel in Figure 6-2-8:

-——-Z/XPF-VERSION 02
COMMAND ==13>
z/¥PF Report Hierarchuy:
Time Segment: 01

-RELEASE 92 -MOD LEVEL 24 -BUILD DATE-

Hierarchical drill down for:
Current level of report hierarchy:
Humber of Work Units with DB2 data:
DB2 data, by Work Unit,
Work Unit:

Total events this Work Unit:

Total DBZ2 events:

Wy DBZ2 events % of Work Unit total events:

P ey bt o g~ o R | o P - | e | R < o o SRR o, o R | o G - | - S

Wy DBE2 events of Time Segment DBZ2 events:
Wy DBZ2 events of Time Segment total events:
T T = A L

Humber of DBRM's with data:

DBRM name: APIVP Total event=s this DBRM:
Percent of Work Unit total DB2 events:
i gy dO L 280 38 6 50, BE, L e B9 B,

Percent of Time Segment total DBZ2 events:
Humber of Sections with data:
DBRM source:

DBRM pre-compile timestamp:
Plan name opened on connection:
SY¥SIBM.SYSPACKAGE information available.
Use drill down or expand function to view.
Connected to DB2 system:

Connection name:

Connection tupe:

APF1.¥100.
2012-12-26-15.

lalalal o EXECUTE
Section nbridec): 29 Section nbri{hex):
Total events thizs =statement:
Percent of DBERM total events:
P, I - B - I | SRR R R T

Statement t?pe:

i A ey A R sy

Figure 6-2-8.

2011-12-20-11.24.
2013-10-22-15.09.

037062014 08.15
LL ==* CSR
Package Information
Time Segment
AP

IVP
AP IVPKG
DADODO1
DADOOO1

19.969248
22 .664152
APIVFPZRO

-¥1i90.LOAD

SPECIFIED
SPECIFIED

MHO
SPECIFIED

4
TSK1U2TB
TSK1U2DB
TSK2U2TB
TSK2U2DB
ASMSRCZR

DADGOG2
ASMSRCON

DADGOOG2

03,06,-2014 08.15
SCROLL

==>» CS5R

DB2 data by Work Unit
Time Segment
2

in descending order by event count

APIVPZRO
1.912.412
1,079,392

56. 44

. 100

49.87
27.18
1

1.079,392
100.00

. 100

49.87
14

DBRMLIB.DATA
35.19.817233

APIVP

DBAG
DBE2CALL
BATCH

9¥9,941
90.78

96 | z/XPF User's Guide

Again, SYSIBM.SYSPACKAGE is the “big dog” with 979,941 events. Let's page down and
look at the next biggest Work Unit. | page down and see Figure 6-2-9:

--—Z/HPF-YERSION 02 -RELEASE 02 -MOD LEYEL 24 -BUILD DATE- 03-96-2014 08.15
COMMAMD ==3> SCROLL ==» CSR

Percent of Work Unit total DBZ2 events: 96.78
Percent of Time Segment DBZ2 events: 45 .27

Precompile statement number: 3.663

Hbr of DE? Csects with activity, this s=tatement:

Use drill down or expand function to view.

Statement type: O0OES DELETE

Section nbrildec): 33 Section nbri(hex): 0021

Total events this statement: 30,344

Percent of DBRM total events: 02 .81
g IO+ | SR [- T " S, - o SR o, . O | DY - |

Eercent of Work Unit total DB2 events: 02 .81

Percent of Time Segment DB2 events: 91 .40

Precompile statement number: 3.767

DELETE FROM DADOOR1 . ASMSRCZR WHERE OPCODE = 'LALAL' AND STMTHAME =
YESTHMT*

Hbr of DBE2 C=sect=s with actiwvity thiz statement: a7

Uze drill down or expand function to view.

Statement type: ©9OEA UPDATE

Section anfdec]: 32 Section nbri(hex): 0020

Total events this statement: 25,041
Percent of DBRM total events: o2.31
FE e B - NS 1 R | LT ¢ o S - BRI - - R, S - - SR - . o

Percent of Work Unit total DBZ2 events: o2.31
Percent of Time Segment DB2 events: 01.15

Precompile s=tatement number: 3,761
UPDATE DARDOOO1 . ASMSRCZR SET OPCODE = 'LALAL' WHERE OPCODE =

Figure 6-2-9.

Well, the next largest Work Unit is a DELETE, with 36,344 events. Let’s drill down, and we’ll
arrive at Figure 6-2-10:

DUKESOFTWARE. | 97

-——z/XPF-¥ERSIONM 02 -RELEASE ©2 -MOD LEVEL 24 -BUILD DATE- 03062014 08.15
COMMAND ==> H SCROLL ==> CSR

C=s=ect name: DENISGRT

DSHWHMODS = DSHISGRT READ AND TEST A SEGMENTED DATA PAGE

Total eventzs thi=s Csect: 464,577

Percent of total text statement events: 4? 40
e N~ - e 1o T Lo o e 1 B - 7 DR, - ROR - 1 B - T B 2

Percent of total Time Segment DB2 events: 21.46

Percent of total Time Segment events: 11.69

Csect name: DSNHISGSU

DSHWHMODS = DSHISGSU UPDHTE SEGHMENTED SPACE HMAFP PAGE

Total event=s thi=s Csect 35,828

Percent of total text statement events: 23 .65
IO B0 o 30 0. 850 B0 S0 L J80.L 3060 2. 100

Percent of total Time Segment DBZ2 events: 01 .65

Percent of total Time Segment events: Q0,90
Less than 1 percent

Csect name: DSHISRTI
DSHNWHODS = DSHISRTI INSERT POSSIBLY CONNECT RECORD
Total eventz this C=zsect 12,365
Percent of total text statement events: 21 .26
P T f R - ERE T T R . | I] - RNCRE s] o R = 1 c DR~ 1 R

Percent of total Time Segment DBZ2 events: 00 .57
Less than 1 percent
Percent of total Time Segment events: 00 .31
Less than 1 percent

Csect name: DSHISGNHS

DSHNWHODS = DSHISGHS HLLDCHTE A HNEW SEGHEHNT

Total events thi=s C=zect 2,244

Percent of total text statement events: Q0.22
.16, ..20...30...46.. .50...606...70...80...!"

Percent of total Time Segment DBZ2 events: 00 .10

Figure 6-2-10.

We've reached the last level in this hiearchy. To be absolutely truthful, your author knows
nothing about DB2, but is fairly certain this will be revelatory content to a real DB2 programmer!

98 | z/XPF User's Guide

DUKESOFTWARE. | 99

Chapter 7 - Detail Reporting
7-1 Option 8: Create a profile detail report.

You can access z/XPF’s Detail Reporting features by using “Option 8 Detail Reporting” from
the Primary Create Profile Menu. Here is the panel again for easy reference:

---z/¥XPF PRIMARY CREATE FPROFILE HMENU
OPTION

Enter Option
1) Select source capture dataset to use in report process.
Displag user comments in selected source capture datasets.
List library contents contained in selected capture dataset.
Free allocated source capture dataset.
Map load modulessdisplay load module maps in selected source dataset.

Yiew profile summary data. Summary statistics categorized by

Work Unit, Load Module, Csect, and PSW offszset. Includes DB2
statistics if the target accessed a DBE2 system.

Yiew profile summary data =specifuing Time Segments. Same reports as
option 6 above, but can set Time Segments as small as one second.

Create a profile detail report. ¥Yiew event data by event tuype.
Create datasets for FTP process. Creates a compressed dataset to
be downloaded and used by z/XPF-PC. 1

Set report BrowsersVYiew, dataset volser and unit type.

PF3-END to return to previous panel

Figure 7-1-1.

If you have identified something of interest in your review of Summary Reports, then you
may use Detail Reporting to see the underlying event data. Detail Reports give you access
to information at the very lowest levels. In effect you'll be looking at “dressed up” Trace
Records formatted to deliver the information far more clearly than a raw Trace Record.

Option 8 from the PRIMARY CREATE PROFILE MENU brings you to this screen, Figure
7-1-2 below:

- —-z/XPF
OPTION

SOURCE ==3>» Z¥XPF.BOB.D1901513 . T105824 . PROFL
Enter Option.

Set Report Generation Filter Parameters

Use this function to reduce the size of the report to be
created. Each event in the =source dataset usually add=s 6 - 10
lines to the report. Creating a detail report without filters
is not recommended.

Set Report Data=set Al location Parameters.

Generate And Di=play Report Data

PF3/END To Return To Prewvious Panel

Figure 7-1-2.

When z/XPF receives a raw Trace record, it edits the Trace record into a more intelligible
format. Thereafter it's referred to as an “Event record”. A Detail Report consists of all Event
records in the source capture dataset that pass the filters you set. Each Event record

100 | z/XPF User’s Guide

generates from 8 to 10 lines of output in the report. You can view the unique events that
contributed to the totals statistics for the various categories.

The amount of output in the report dataset is dependent upon the number of events in the
source capture dataset, and the filters that you set prior to creating the report.

Please keep in mind that in Detail Reporting you will potentially be working with MILLIONS
of data points. Therefore, if you don’t employ z/XPF’s powerful filtering technology you may
well experience a SPACE ABEND because the resulting report will be so huge. You also may
not be able to find the information you need amongs all the data.

As you use z/XPF’s filters bear in mind that:

» The judicious use of filter settings yields a report that is easy to understand.

» Filter settings are collective in nature. They persist until and unless you clear them.

* Any time you include an item from a category (such as Work Units) all other items in that
category are EXCLUDED.

» Thein-judicious use of filter settings can cause the creation of a report containing hundreds
of thousands of lines of output and possibly a space abend due to lack of DASD space.

» |tis easy to clear ALL filters at once by choosing Option 1 from the “Include Records For
Report panel, which is shown below in Figure 7-1-3:

—e e/ MPF-=-=-===-ccececee=c==|NCLUDE RECORDS FOR REPORT-----—-c-ccc - cccccc e e e e e e e ===
OPTION ===}

r The MNumber In The Command Line To Specify The Include
~ia Indicated. Multiple Types 0f Criteria May Be

> e
Of PSW{Nucleus,
Medule MName

1)
a)
3)
4)
5)
6)
7>

Enter Key To Process Selectio
PF3/END To Return To i

Figure 7-1-3.

In this book we’ll go over how to use all of the menu choices for filtering and creating Detail
reports. I'll list each of the options from Figure 7-2 in the following pages. However, there’s
a useful sub-section after this discussion that offers “Tips and Techniques for Creating Detail
Reports.” Let’s get back to work on creating Detail reports.

On the panel above in Figure 7-1-2 you have three choices.
* Option 1: You can set your report’s filters.

« Option 2: Control the allocation/volser/size of the dataset that will be populated by your
report. This allows you to override system defaults as to DASD device or pool, change

DUKESOFTWARE. | 101

VOLSERSs and the primary/secondary allocations for your report.
» Option 3 Create your report.

7-2 Detail reporting by Work Unit Name

Let’'s set some filters and look at Work Unit statistics. From the panel in Figure 7-2, I'll pick
Option 1, and then Option 2 from the panel in Figure 7-3 to select work units for my report.
Please see Figure 7-2-1 below:

=== A KPR Select Work Units For Inclusion In Report

Source dsn = ‘Z¥XPF .DADIVP.DO30614. PROFL "

Uze character 'I' to include a Worrk Unit in the report. If any Work Unit
included than all Work Units not included will be excluded in the report.
use character 'R°" to reverse the include status for an included Work Unit.

PF3-END TO SAYE SELECTIONS

IEFIIC BEGIN 07.46.43:59.4398 (= .599.14:67.84586
TOKEN 0000009CO00000010000000300BEGESS NOT SET
APDRYR BEGIN 07 .46.44:60.0095 EMND .14:67. 8462
TOKEN 0900009 Ce0000001000000CEQOBEGEEE STATUS INCLUDED
APIVPZRO BEGIN 07 .46.49:64.6849 END ©7.59.14:67.68464
TOKEN Q000009CO0000001000000CFOOBEGBEDO STATUS NOT SET
APIYPONE BEGIN 07 .46.49:65.0033 END ©97.59.14:67.8465
TOKEHN OOOOOOQEOOOOOOO1000000D0008EE4BO STATUS

SRBDFLT BEGIN 07 .46.43:65.8298 END 1753
TOKEN 00000001 000000000000000000000000 STATUS

IGGOCLAL BEGIN 07 .46.43:65.6543 EMND 17 53
TOKEHN 0000005 2000000000000000003DC1B92 STATUS

IOSYCPRPX BEGIN 07 .46.43:65.6705 END 0O7.59.
TOKEN Q0000003 000000000000000001439DASB STATUS

IGWLGEDC BEGIN 07 .46.44:61.2974 END ©O7.46.
TOKEHN 00000054600000000000000006040DC328 STATUS

PEQH-XCS BEGIN 07.46.44:67.6720 END 17 .53

000000050000 000000000000243F 78508 STATUS

IEAQTIOO BEGIN 07.46.49:66.4502 END 0O7.59.
TOKEHN 000G00060000000000000000012111E84 STHTUS

APIVSRE1 BEGIN 07 .48.19:14.9434 END
TOKEN 000000070000 00000000000024910C40

IEAYEPST BEGIN 07 .48.44:82.2065 EMND
TOKEHN 000G000800000000000000000143834C

ICYPFAFPP BEGIN 07.54.32:22.0365 END
TOKEN 000000030000 00000000000001088518

IEAYVYRPZ2 BEGIN o7.57.28:88.0862 END 4
TOKEN Q0000Q0AR00R0O00ORDIQOOOOSFEDEB3I0 STATUS

Figure 7-2-1.

I'll select APDRVR, z/XPF'’s little “test-drive” program. | put an “I” next to it so that it will be
included. z/XPF replaces the phrase “NOT SET” with the word “INCLUDED?”. | press PF3 to
back out of this panel, and I’'m back to the previous panel (Figure 7-1-3).

Let’s set another filter for SVCs. This will have the effect of filtering SVCs ONLY within Work
Unit APDRVR (remember, filter settings are cumulative). To do that, I'll pick Option 5 from
Figure 7-1-3 (By Record type). Now | am presented with Figure 7-2-2 below:

102 | z/XPF User's Guide

——— 2/ KPF -
OPTION = >
Use thi=zs panel to inlude
here will be excluded.
field to the left of the

not =s=elected

record types. Record types
in the selection

Place any non-blank character
record type. k- i

indicates previous

selection of that

record type.

Sub-channel
External Interrupts
SVC= By Humber

Program Interrupt=s(Page

S1ipsPer
Dispatch
Restart Interrupts
Lock Suspensions
Recovery Event
Program Call,

Interrupts

Enter

Program Return,

I-0 Interrupts
All SVCs

Branch Enter
Faul t=-Abends)

Machine Interrupts

User Trace

Key To Process Selections
PF37END To Return To Previous Panel

Figure 7-2-2.

Program Transfer

System Service

| tab down to “SVCs by Number and put an “I” next to it. Then, | am presented with a list of
all the SVCs, as in Figure 7-2-3, below:

- ——z/ ¥PF

OFTION =

If you want to see more of the available SVCs, you can page down to see them.

Use any

PF3-ZEND TO

EXCP
EXIT

LINK
DELETE
SYMNCH

ERRE XCP
BLDL-FIND
STOW
DEVTYPE
OBTAIN
REMAME
IOHALT

WTL

LABEL
ATTACH
OVRLYBRCH
DEQ
SNAP-SNAPX
DISABLE
FREEDBUF
STAE-ESTAE
CHKPT
BTAMTEST
BSP
IEAVVCTR
DQUEUE
LSPACE
SETPRT
GRAPHICS
DOM
RESERYED
TGETTPUT/TPG
STAX
DYMALLOC
AQCTL
IMGLIB
RESERYED

T e I O A A A A O O |

non-blank character to

o1
o4
o7

==-SELEET S3S¥LC'S=-

specifu individual

SAVE SELECTIONS

TL
GETHMAIN-FREEMAI
ABEHND
PURGE
OPEN
OPEN TYPE=J]
TREBAL
RESERYED
FEOV
HGCR
SEGLD-SEGWT
EXTRACT
CIRB
TTIMER-STIMER
RESERYED
RESTART
EOY
RELBUF -REQBUF
IKJEGSE6A
RDJFCB
RESERYED

IFBSYCTYE
STATUS
RESERYED
*UNDEF INEDX
RESERVYED
YOLSTAT
STCC

UNDEF INED
*UNDEF INEDx
XLATE
RESERYED
ESR

Figure 7-2-3.

of 86
PAGE

POST
FREEMAIN

CLOSE TYPE=T
CATALOG-LOCATE
SCRATCH
REALLOC
WTO-WTOR
RESERVED
IDENTIFY

CHAP
STIMER-STIMERM
RESERVED

RELEX

ENQ

OLTEP

DETACH
RESERVED
SYMNADAF -SYNADRLS
ASGMBFR

DAR

RESERYED
RESERVED
SMFWTHM

ATLAS

RESERVED
TCBEXCP
SYSEVENT
PROTECT

QTIP

TOPCTL

MODESET
RESERYVED

In this

example | have made a selection of the WAIT and GETMAIN SVCs.

That’s enough filtering for an example. I'll use PF3 to back all the way out to the main Detail
Report panel.

DUKESOFTWARE. | 103 Now, to
generate the report I'll enter Option 3 as in Figure 7-2-4 below:
- — -7/ ¥PF

SOURCE ==> "Z¥PF.DADIVP.DO30614 . PROFL®
Enter Option.

Set Report Generation Filter Parameters

Uze this function to reduce the =ize of the report to be
created. Each event in the =ource dataset uzually add=s 6 - 10
lines to the report. Creating a detail report without filters
is not recommended.

Set Report Data=szet Allocation Parameters.

Generate And Display Report Data

PF3-END To Return To Previous Panel

Figure 7-2-4.

After | press enter, z/XPF filters my report. It goes through the capture dataset and pulls
out what | asked for. While it's processing, you'll see an intermediate screen like the one in
Figure 7-2-5 below:

TOTAL NUMBER OF RECORDS TO PROCESS 4, 066, 089
TOTAL PROCESSED 370,000
Percent complete 09,09
o
Ak
Process =start time

Current time

Elapsed =since process start

Figure 7-2-5.

Staring at this screen is like watching the laundry go around in the dryer. If you have a large
report for z/XPF to parse, find something else to do.

Once the sorting is finished, z/XPF presents the filtered report. See Figure 7-2-6 below:|

104 | z/XPF User’s Guide

Menu Utilities Compilers Help

BROWSE BOB .ZXPFDTL.DO31914.T102037 .DADIVP Line 90000000 Col 001 6809
Command ===3> Scroll ===» CSR

Figure 7-2-6.

In the report we see some preamble text and then the first Event Record of the report. This
report goes on for some pages, and | elected NOT to show you the whole report, for brevity’s
sake.

Let’s repeat the steps | took in creating this detail report:

1. | selected a single task: APDRVR.
2. | selected two SVCs within that task.
3. |ran my report.

At this point, | could page up/down within the report or use the Find command to search for
specific things. There’s a LOT of information in each “formatted” Trace Record.

If you have decided to use z/XPF’'s ZXPFTRAC macro you could have signalled events in
your code that normally don’t create a Trace Record. This facility allows you to create your
own “Trace Records”, and these records appear ONLY in Detail Reporting.

Note: Remember that z/XPF'’s filters persist across Detail Reports in the same reporting
session. So, if you've set filters for a previous report and you create another report then the
previous filters remain active for the next report as well. This is by design, because as you
drill down using filters, you may want to retain your existing filters, and refine your criteria,.

On the other hand, if you want to delete all filters you can press “PF3” to get back to the

DUKESOFTWARE. | 105

SPECIFY OPTIONS FOR DETAIL REPORT (Figure 7-1), pick Option 1 to “Set Report
Generations...” (Figure 7-3) and use Option 1 from that panel to clear your filters. Alternatively,
you can free the allocated capture dataset, re-allocate it and go back into Detail Reporting.
That’s the “brute force” method of clearing filters.

7-3 Detail reporting by Time other than Data Capture Begin and End

Each event that is contained in the source capture dataset has a timestamp set at the time
the event was copied to a z/XPF-owned buffer. Detail reports normally include every record
without regard to time-stamp, but you can influence that in the following panel when you
select Option 3 in Figure 7-3 “INCLUDE RECORDS FOR REPORT".

I'll navigate back to this panel, and select Option 3. See Figure 7-3-1 below:

-—-z/XPF

Enter The MHumber In The Command Line To Specify The Include
Criteria Indicated. Multiple Types O0Ff Criteria Mauy Be
Combined.

Clear all previous filter settings.

By Work Unit Mame

By Time Other Than Data Capture Begin And End
By Record Humber In source Dataset

By Record Type

By Location OFf PSW(HMucleu=s, PLPA, etc., etc)
By Load Module Hame

Enter Keuy To Process Selection
PF3-END To Return To Previous Panel

Figure 7-3-1.

Next, | press Enter, and see the panel in Figure 7-3-2 below:
- ——z/XPF
OPTION
Source ==3 "ZXPF.DADIVP.DG3IOGG14 . PROFL "
Time Values On This Panel Are in HH.MM.S5: TH Format

Actual Data Capture Begin Date 03/°06/,2014
Actual Data Capture Begin Time 07 .46.43:25

Actual Data Capture End Date 037062014
Actual Data Capture End Time 07.59.12:91

Change A= Desired
Current Report Setting Begin Date 037062014
Current Report Setting Begin Time 07 .46 .43 :25

Current Report Setting End Date 03/7°06/,2014
Current Report Setting End Time 07 .59.12:91

Enter Key To Process Selections
PF3END To Return To Prewvious Panel

You cannot exit this panel with an invalid Date or Time specified.

Figure 7-3-2.
The top variables in this panel state the actual beginning and ending date and time for your
data capture session.

106 | z/XPF User’s Guide

The bottom variables in this panel can be changed from the original values in the top section
of the panel. When you change these values, periods, forward slashes and colons must be
in the correct positions.

You may not alter the time-stamp parameters to values EARLIER or LATER than the actual
Data Capture beginning and ending time-stamps (Yep, | tried it). If you do this, z/XPF will
return a “DATE/TIME INVALID” message.

If you end up making a mistake on this panel, you can blank out the fields, press Enter, and
z/XPF will return the original values to the panel.

There’s a cryptic word saying “MORE +”. If you want to see more of the explanatatory text
at the bottom of this panel, press PageDown (typically PF8) to view it.

7-4 Detail reporting by Record Number In source Dataset

In addition to a timestamp, each record contains a unique, sequential record number. You
may filter by record number in the report.

When you select Option 4 in the panel entitled, “INCLUDE RECORDS FOR REPORT” in
Figure 7-10, then the panel below in Figure 7-4-1 will be displayed:

--—-z/XPF
OPTION

Data Capture Include Begin Record Mumber
1
Data Capture Include End Record Number
6089

Change As Needed

Current Report Setting Include Begin Record NHumber
LA S

Current Report Setting Include End Record Humber
49066089

Enter Key To Process Selections
PF37END To Return To Previous Panel

To reset the change values to their original values, clear the

Figure7-4-1.

Overtype either one of the bottom two variables on the panel to alter the beginning and end
record numbers for the report.

DUKESOFTWARE. | 107
7-5 Detail reporting by Record Type

Use Option 5 from Figure 7-10 to get “here”. Use this filter when only specific event types are
to be examined. Multiple record types may be selected. See Figure 7-5-1 below:

Uze thi=s panel to inlude record tuypes. Record types not =selected

here will be excluded. Place any non-blank character in the =selection
field to the left of the record tupe. "I" indicates previous
selection of that record type.

Sub-channe | - I-0 Interrupts

External Interrupts _ All SYC=

S¥C= By Number = Branch Enter System Service
Program Interrupt=s(Page Faul ts-Abends)

SlipsPer Interrupts

Dispatch _ Machine Interrupts

Resztart Interrupts

Lock Suspensions

Recovery Event o User Trace

Program Call. Program Return. Program Transfer

I

Enter Key To Process Selections
PF37END To Return To Previous Panel

Figure 7-5-1.

You can see that | still have an “INCLUDE” set for SVC by number on this panel. I'll remove
that filter by overtyping the “I” with a blank.

You may select as many or as few of the record types as desired. There are numerous other
sub-menus that allow you to filter exactly the events you want to report on.

Setting an “INCLUDE” to most of these filters returns only the message, “INCLUDE
PARAMETERS SET”, and normally that’s all you have to do. However, if you INCLUDE
“Program Call, Program Return, Program Transfer”, z/ZXPF shows you a panel similar to the
one below in Figure 7-5-2, below:

-—--z/XPF PROGRAM CALL INCLUDE TABLE Row 1 of 3
OPTION ===3
Enter an "I" in the 1st Include column to include the entire PC table.
Enter an "I"™ in the 2nd Include column to select individual PCs.

Enter Keu To Process Selection
PF37ENMD To Return To Prewvious Panel

Include Include Time High PC
Entire Individual Table Humber
Table PCs In Use In Table
07.29.51: a018080F
07.46.49:66 O018BEO3
07.48.44: a018BEG3
RO R R R R R R R R Rk kR Bottom OF data ko ke ok koR R RO O R R RO O R R RO R R R K

Figure 7-5-2.

108 | z/XPF User’s Guide
7-6 Detail reporting by Location Of PSW

z/XPF can identify the virtual storage location of an instruction address contained in an Event
record. To do this, you select Option 6 in the Include Records For Report panel (see Figure
7-10).You may restrict events in the report to one or more virtual storage locations. The
panel below in Figure 7-6-1 shows how to set location filters:

---z/ XPF
OPTION

Use this panel to indicate the PSW/instruction address location
to be included. Enter any non-blank character to specify.
Clear the =selection field to reset a specified location.

Priwvate Area _ Extended Private Area

MHuc |l eus
Common Area - Extended Common Area
FLPA Extended PLPA
S0A _ Extended S0A
Depress the Enter Key to set the wvalues.

PF3-END To Return To Previous Panel

Figure 7-6-1.

7-7 Detail reporting by Load Module Name

z/XPF allows you to include or exclude load module names in a Detail Report. To do that
select Option 7 in the Include Records For Report panel (see Figure 7-10). That panel is
presented below in Figure 7-5-2:

---z/¥KPF Row 1 of 10
OPTION

Enter an 'I' in the field to the left of the name to include a Load
Module. 'D' to di=splay C=sects within a Load Module. 'R" to reverse

the include status. Table can be =orted. Enter help for sort information.
FIND command awvailable.

PF37ENHD TO EXIT

Include MName Status HNbr OFf Csects
APDRVR

ISGLCRT
APIVYPZRO
AP IYPONE
APIVSREB1
DSNALI

DSNACAF
APIVNRNT
ISGLOBT
_ APIVHNRNT
Ak ok R ROk R R kR ok kkk ko kR kokkkkkk Bottom of data sk sk ko sk ko sk ko ok ook ok ok ok ok ok ok kokokok

[
e e o 33 LY o]

Figure 7-7-1.

DUKESOFTWARE. | 109

7-8 Tips And Techniques For Creating Detail Reports

Our first and best advice is to use the filter setting logic to restrict the amount of output in the
report. If this isn’t done, the report will contain so much data that it is almost impossible to
find the events you are interested in. Here are some ideas to think about as you try to isolate
events in your z/XPF reports. You can consider these “recipes” for various kinds of enquiries.

Remember, filter settings are persistent. If you want to change your approach you may have
to back all the way out to the “INCLUDE RECORDS FOR REPORT” panel, and issue Option
1 to “Clear all previous filter settings”.

Reporting on device I/0O Activity:

* Go into the filter setting main panel and select Option 5, for record types.

» Select Sub-channel and I/O Interrupts.

* Press PF3/END back to the main filter setting panel.

» Depending upon the volume of I/O activity in the capture dataset, set another filter either
by time or by record number.

* Create the report.

When you are browsing your report:

 Enter a FIND command for “SUBCH”. This should position to the first START SUB-
Channel event in the report.

* Note the device number, then page down in the report to the 1/O Interrupt with a matching
device number.

* Repeat this process as necessary.

To get a “feel” for how /O operations affect a program:

« Go back into the filter setting logic and add include settings for SVCs EXCP, EXCPVR,
and WAIT.

* On the record types main panel, select Dispatch.

* Then, request the report again.

The WAIT and the Dispatch events will add events of those types not related to the I/O
activity.

When you are browsing your report:
» Search for “EXCP’.

» The sequence of events should be the EXCP/EXCPVR, the WAIT, the Start Sub-channel,
the I/O Interrupt, and finally the Dispatch at the PSW WAIT address.

110 | z/XPF User's Guide
Reporting on Page Faults and Program Interrupts:

« Under Option 5 In the filter setting logic, select “Program Interrupts” (Page Faults/Abends).
« Set the Work Unit INCLUDE flag as needed for the desired Work Unit.

+ Set the load module name if known.

* Request the report.

When you are browsing your report:

» Locate page faults by searching for “PAGE TRANS” or “PAGE TRANS EXCEPTION”.
« Each of these records identifies a program interrupt that occurred due to a page fault.

Reporting on Abends in a program:
If a Summary Report indicated Recovery events for a Work Unit, then:

+ Set the INCLUDE flag for the Work Unit in the filter logic.
» Next, inthe record types panel (Option 5), select Program Interrupts and Recovery events.
» Create a report.

When you are browsing your report:

» Search for the keyword “RECOVERY” to locate the first event. WORD 3 of the formatted
Recovery event data will show the type of abend encountered.

« Search back up to the Program Interrupt event just preceding the Recovery event.

» Make sure the description of the abend matches the hex value in WORD 3 of the formatted
Recovery event.

» Make note of the record number and the time of the Program Interrupt.

If the recovery routine in effect at the time of the abend has a retry address, and the load
module where the retry from the abend will occur is known, then:

» Go into the filter logic and set the load module name for the Program Interrupt and the
retry.

* Add Dispatch to the event types.

» Create a report.

When you are browsing your report:

* Go back into the report and locate the Program Interrupt again.

» Scroll forward/down to the Dispatch.

* You can now see both the event that marks the abend and the event that marks the retry
after the abend.

DUKESOFTWARE. | 111

If you would like to understand what events are generated as part of recovery termination
manager and the application recovery routine, use either the timestamps from the abend and
the retry event, or the record numbers.

» Go back into the filter setting logic and remove all the previous filters.
» Set either time or record number filtering to the values contained in the records. Create
a report.

When you are browsing your report:

« Look at all of the events between the abend and the dispatch at the retry address.

« Some applications are coded to use an abend as a “signaling” mechanism to indicate that
a problem exists, and action is required.

« If an application “rotates” through the abend/recovery logic a great deal, then there will be
a higher price paid in CPU cycles and lost elapsed time.

To investigate lock suspension times:

* In the record types filter panel under Option 5, select Lock Suspensions.
» Create a report.

When you are browsing your report:

» Search the report for the load module name appearing in the event description for the lock
suspend event.

If there are multiple events with different load module names, it may be easier to take them
one at a time. So:

* In the records type panel, add Dispatch to the selected Lock Suspensions.
* In the load module filtering, add one or more of the names noted from the first report.
» Create a report.

When you are browsing your report:

» Find the first lock suspend event description.

« There may or may not be dispatch events in the report prior to the lock suspend.
Immediately after the lock suspend event should be a Dispatch record.

» Make sure that the load module name and offset values match on both records.

112 | z/XPF User’s Guide
Time Spent Waiting For A Latch:

As of the current release, z/XPF cannot identify the load module in the user’s application that
was suspended waiting for a Latch. However, it can identify the Program Call that transfers
control from the ISGLOBTS Nucleus module to the GRS address space, and the Program
Return to the same address in ISGLOBTS when the Latch is obtained.

From these two events, the user can get to within milliseconds of the actual elapsed time for
the latch obtain request. The timestamp on the Program Call event is the time during the
data capture interval when z/XPF found the event, and copied it to z/XPF’s buffer. z/XPF’s
interval value (if the default is taken) is 20 milliseconds. Thus, z/XPF can get the time to
within 20 milliseconds of the actual time of the latch obtain request. The same is true for the
Program Return.

[As of April 2009 on a z/OS 1.10, the PC number used for the space-switch call to GRS
is “O000010E”. The “eye-catcher” from the target address in the Program Call indicates a
module named ISGLRTR. Itis doubtful if either the PC number, the calling module, or the
target module will change, but if and when it does, this document will be updated with the
new information.]

To view the events that were observed and used to compute Latch time in the Summary
Reports:

» The report dataset will be easier to read if the INCLUDE flag is set for the Work Unit that
experienced the latch delay time.

+ Set ISGLOBTS in the load module name table.

» Create a report.

When you are browsing your report:

* Locate the Program Call and the Program Return.

* Note the time, or the record numbers.

* Go back into the filter logic and remove ISGLOBTS from the load module table.

» Set either the time or the record numbers for the Program Call and the Program Return.
» Create another report.

When you are browsing your report:

» Search for the Program Call you are interested in.

» Five or six events past the Program Call is a PC/BR EN SYS event record with a service
id on the right of 011E IEAVPSE/IEAVXFR.

« The time on the event is the time the Work Unit entered Pause.

* The next record in the report should be a Dispatch record.

* The time on this record is the time the Work Unit obtained the Latch.

DUKESOFTWARE. | 113

ENQ Contention using ISGENQ

[As of April 2009 on a z/OS 1.10 system, the PC number used for the space-switch call to
GRS is “0000011A”. The module receiving control is ISGGRT. It is doubtful if either the
PC number, or the target module will change, but if and when one or both do change, this
document will be updated with the new information.]

When ISGENQ is used to obtain an ENQ, the Program Call to enter the function is executed
directly from the program that is requesting the resource (There is no stub code that branches
to a Nucleus module first, as in Latch Obtain).

Here is the sequence of events observed to obtain an ENQ on a resource when the resource
is available is:

A Program Call is executed using PC number 0000011A

A PC/BR EN SYS event is executed where the service id for the event is 014C ISGENQ.
The return address on the event is the same as the return address on the PC event.

A Program Return is executed. The return address, load module, and csect is the same
as the Program Call

The sequence of events observed to obtain an ENQ on a resource when the resource is not
immediately available is this:

A Program Call is executed using PC number 0000011A.

A PC/BR EN SYS event is executed where the service ID is “0001 WAIT” (The return
address on this event identifies load module ISGGHOM).

A Dispatch event for load module ISGGHOM is executed at the same instruction address
as the WAIT event above.

PC/BR EN SYS event is executed where the service id for the event is 014C ISGENQ
(The return address on the event is the same as the return address on the PC event).

A Program Return is executed to the Program Call’s return address, csect and load
module.

114 | z/XPF User's Guide

/-9 Understanding the Fields in Event Records

Here is an “index” into the meaning of each of the fields you’ll find in z/XPF’s Event Records.
The terms are arranged in order of appearance, line by line.

1st line of each Event Record:

e CPU=nn CPU processor number where the event occurred.

 TIME RECORDED= The time that the record was moved from the processing buffer to z/
XPF’s buffer.

e RECNUM=nnnn/nnnn The record number assigned to this Event Record appears on the
left side of the slash. The Interval number when the Event Record was copied from the
z/OS buffer is on the right side of the slash.

« CMPT’D This indicates that zZXPF was able to record the event with no errors.

« ABND’D This indicates the z/XPF server logic encountered an abend during its interval
processing while recording the event.

2nd line of each Event Record:

EVENT= The type of event is identified as one of the following:

+ START SUBCH

+ MODIFY SUBCH’
« HALT SUBCH’

+ CLEAR SUBCH’
+ RESUME SUBCH’
+ SIGNALADPTR’
+ CANCEL SUBCH’
+ GENERAL EXTR’
+ EMRGCY SIGNL
+ SRVICE SIGNL

+ CALL ‘

+ CLOCK COMPRT
« ENTERSVC °

« SVCRETURN
« PC/BREN SYS

+ TASK DISPTCH’
+ SRB DISPATCH’
+ SUSP SRB DSP’
+ WAIT DISPTCH’

* PGM INTRRUPT
+ SLIP/PER EVT

* /O INTRRUPT’

* MCH INTRRUPT’

DUKESOFTWARE. | 115

+ RESTART INTR’

+ ALT CPU RCVY’

+ RECOVERY

+ LOCK SUSPEND’
+ *ALTER TRACE
+ TIME ‘

TIME= The time value from the actual event.

EVENT TYPE= This is a further explanation of the EVENT= field, and could be considered
a sub-type description. Not all events will have this field. And the sub-types are specific to
events.

If an external interrupt, it might be one of these:

* INTERRUPT KEY

+ CLOCK COMPARATR’
+ CPUTIMER

« MALFNCTN ALERT

+ EMRGENCY SIGNAL
+ ETR

+ SERVICE SIGNAL

If the Event Type is an SVC, it will be one of these (Yes, we’re going to list the SVCs):

+ 00 EXCP ‘

« 01 WAIT ‘

+ 02 POST ‘

+ 03 EXIT ‘

+ 04 GETMAIN ‘
+ 05 FREEMAIN ‘
+ 06 LINK ‘

+ 07 XCTL ‘

+ 08 LOAD ‘

+ 09 DELETE ‘
+ 10 GETMAIN-FREEMAIN’
« 11 TIME ‘

+ 12 SYNCH ‘
+ 13 ABEND ‘

+ 14 SPIE ‘

+ 15 ERREXCP ‘
+ 16 PURGE ‘
+ 17 RESTORE ‘
+ 18 BLDL-FIND ‘
+ 19 OPEN ‘

+ 20 CLOSE ‘

116 | z/XPF User's Guide

. 21
. 22
. 23
. 24
. 25
- 26
. 27
. 28
. 29
. 30
. 31
. 32
. 33
. 34
. 35
.- 36
. 37
. 38
. 39
. 40
. 41
. 42
. 43
. 44
. 45
. 46
. 47
. 48
. 49
.- 50
. 51
. 52
. 53
. 54
. 55
.- 56
. 57
. 58
. 59
.- 60
. 61
. 62
. 63
.- 64
.- 65
.- 66

STOW ‘
OPEN TYPE=J
CLOSE TYPE=T
DEVTYPE ‘
TRKBAL ‘
CATALOG-LOCATE
OBTAIN ‘
RESERVED ‘
SCRATCH
RENAME

FEOV

REALLOC
IOHALT

MGCR
WTO-WTOR
WTL
SEGLD-SEGWT
RESERVED
LABEL
EXTRACT
IDENTIFY
ATTACH

CIRB

CHAP
OVRLYBRCH
TTIMER-STIMER
STIMER-STIMERM
DEQ

RESERVED
RESERVED
SNAP-SNAPX
RESTART
RELEX

DISABLE

EOV

ENQ

FREEDBUF
RELBUF-REQBUF
OLTEP
STAE-ESTAE
IKIEGS6A
DETACH

CHKPT

RDJFCB
RESERVED
BTAMTEST

DUKESOFTWARE. | 117

67 RESERVED

68 SYNADAF-SYNADRLS
69 BSP

70 GSRV

71 ASGNBFR

72 IEAVVCTR

73 SPAR

74 DAR

75 DQUEUE

76 IFBSVC76

77 RESERVED

78 LSPACE

79 STATUS

80 RESERVED

81 SETPRT

82 RESERVED

83 SMFWTM

84 GRAPHICS

86 ATLAS

87 DOM

88 RESERVED

89 RESERVED

90 RESERVED

91 VOLSTAT

92 TCBEXCP

93 TGET/TPUT/TPG
94 STCC

95 SYSEVENT

96 STAX

98 PROTECT

99 DYNALLOC

101 QTIP ‘
102 AQCTL ‘
103 XLATE ‘
104 TOPCTL ‘
105 IMGLIB ‘
106 RESERVED ‘
107 MODESET ‘
108 RESERVED ‘
109 ESR ‘

110 RESERVED ‘
112 PGRLSE ‘
113 PAGING SERVICES °
114 EXCPVR ‘
115 RESERVED ‘
116 ESR ‘

118 | z/XPF User's Guide

117 DEBCHECK ‘
« 118 RESRVED ‘
« 119 TESTAUTH ‘
* 120 GETMAIN-FREEMAIN’
« 121 VSAM ‘

« 122 ESR ‘

+ 123 PURGEDQ ‘
« 124 TPIO ‘

« 125 EVENTS ‘
126 RESERVED ‘
« 127 RESERVED ‘
« 128 RESERVED ‘
« 129 RESERVED ‘
« 130 RACHECK ‘
* 131 RACINIT ‘
132 RACLIST ‘

« 133 RACDEF ‘

* 134 RESERVED ‘
« 135 RESERVED ‘
* 136 RESERVED ‘
« 137 ESR ‘

+ 138 PGSER ‘

+ 139 CVAF ‘

* 143 GENKEY ‘
146 BPSEVC ‘

* 148 and above, up to 255 are user defined SVC?s.

If the Event Record describes a Program Interrupt (‘EVENT=PGM INTRRUPT"), then you will
see one of the following

+ OPERATION EXCEPTION’
*+ PRIV OPER EXCEPTION’

+ EXECUTE EXCEPTION’

+ PROTECTION EXCEPTION’
+ ADDRESSING EXCEPTION’
+ SPECIFICATION EXCPTN’

+ DATAEXCEPTION

+ FXD POINT OVR EXCPTN’
* FXD POINT DIV EXCPTN’

+ DEC OVFLOW EXCEPTION’
+ DEC DIVIDE EXCEPTION’

+ HFP EXP OVRFL EXCPTN’
« HFP EXP UDRFL EXCPTN’
+ HFP SIGNFC EXCEPTION’
+ HFP DIVIDE EXCEPTION’

+ SGMT TRANS EXCEPTION’

PAGE TRANS EXCEPTION’
TRANS SPEC EXCEPTION’
SPECIAL OP EXCEPTION’
OPERAND EXCEPTION’
TRACE TABLE EXCPTION’
SPACE SWITCH EVENT
HFP SQ ROOT EXCPTION’
PC TRANS SPEC EXCPTN’
AFX TRNSL EXCEPTION’
ASX TRNSL EXCEPTION’
LX TRNSL EXCEPTION’
EX-TRANSL EXCEPTION’
PRIM AUTHORITY XCPTN’
SCNDRY AUTH EXCPTION’
ALET SPFC EXCEPTION’
ALEN TRNSL EXCEPTION’
ALE SEQNC EXCEPTION’
ASTE VALIDITY EXCPTN’
ASTE SEQNC EXCEPTION’
EXTND AUTH EXCEPTION’
STACK FULL EXCEPTION’
STACK EMPTY EXCPTION’
STACK SPEC EXCEPTION’
STACK TYPE EXCEPTION’
STACK OPER EXCEPTION’
SPACE SWITCH EVENT
HFP SQ ROOT EXCPTION’
PC TRANS SPEC EXCPTN’
AFX TRNSL EXCEPTION’
ASX TRNSL EXCEPTION’
LX TRNSL EXCEPTION’
EX-TRANSL EXCEPTION’
PRIM AUTHORITY XCPTN’
SCNDRY AUTH EXCPTION’
ALET SPFC EXCEPTION’
ALEN TRNSL EXCEPTION’
ALE SEQNC EXCEPTION’
ASTE VALIDITY EXCPTN’
ASTE SEQNC EXCEPTION’
EXTND AUTH EXCEPTION’
STACK OPER EXCEPTION’
ASCE TYPE EXCEPTION’
RGN 1ST TRANS EXCPTN’
RGN 2ND TRANS EXCPTN’
RGN 3RD TRANS EXCPTN’
MONITOR EVENT ‘

DUKESOFTWARE.

| 119

120 | z/XPF User's Guide
« CRYPTO OP EXCEPTION’

The following fields are on the next three lines

PASN= 4 hex characters identifying the Primary ASID value.

HASN= 4 hex characters identifying the Home ASID value.

PSW= The 16 byte content of the PSW recorded in the event.

LOC= The virtual storage location of the PSW. Will be one of the following:

+ NUCLEUS
+ PRIVATE

« EXT PRIV
+ COMMON

KEY= The key of the PSW. The key the program was in when the event was recorded
STATE= Either PROB for problem state or SUP for supervisor state.

ASC= The Address Space Control mode from the PSW (PRIM, HOME, AR or SCND).
MODE= The amode bit from the PSW. 24-, 31- or 64-bit addressing.

INSTR ADDR= The instruction address from the PSW.

LM= The name of the Load Module that contains the PSW instruction address.

OFFSET= The offset into the Load Module load point for the instruction address.

WORK UNIT= The name of the Work Unit.

TOKEN= For tasks, the token value from the STOKEN field in the STCB control block. For
SRBs, a unique number generated by z/XPF to identify the SRB

When the field reads “EVENT=START SUBCH?”, You'll see these fields in the Event Record:

« DEVICE= A 4-character hex device address, from the start subchannel event record

 BASE= A 4-character hex device address. When PAV is active for the device, this will
show the PAV base device address.

+ |OSASID= The ASID value associated with the start sub-channel event. This will always
match the target application home ASID (Address Space Identifier).

« TCB= The virtual storage address of the TCB associated with the event.

DRVR ID= This is the 10 Supervisor code placed in the start sub-channel record. This will
contain one of the following values:

+ RESERVED FOR IOS
+ MISC 24 BIT I0S

+ EXCP PROCESSOR
+ VSAM

+ VTAM

+ TCAM

+ OLTEP

+ PCIFETCH

+ JESS3

DUKESOFTWARE. | 121

+ MSC
+ |[ECVIOPM PURGE
+ VPSS

+ ASM

+ MSG DSPL SERVICE

+ ASGN/UNASGN SRVC
* DYNAMIC PATHING

+ DAVV

+ DEV CNTL SERVICE

+ ASYC OPRTN MNGR
+ DFSMS

+ XCF CTC I/0O DRVR

+ |OS USE DRVRID

+ |OSVSLFD DRVR ID

+ IOSVIOPADRVR ID

+ MISC 31 BIT IOS

+ SVC33

+ CLR DEVICE RCVRY
+ SUBCHANNEL RCVRY
+ SVC16 PURGE

+ UNCONDTNL RESRVE
* MSNG INTRPT HNDL
+ /O PREV HANDLER

+ RE-RESERVE SRVCE

When the event is an /O interrupt, an additional line will be in the event that contains the
channel and device status contained in the interrupt.

DEV STATUS = one or more of the following:

* UNIT EXCEPTN
+ UNIT CHECK

« DEVICE END

« CHANNEL END
+ BUSY

« CTLUNIT END

+ STATUS MDFR
« ATTENTION

It is also possible to see a sub-channel status word contained in the 1/O interrupt. In that case
you will see “SUBCH STATUS =". The value can be one of the following types:

+ CHAINING CHECK
* NTRFC-CNTL CHCK
* CHNNL-CNTL CHCK

122 | z/XPF User's Guide

+ CHNNL-DATA CHCK
+ PROTCTN CHECK

+ PROGRAM CHECK
* INCORRECT LNGTH
+ PGM CTL INTRUPT

DUKESOFTWARE. | 123

124 | z/XPF User's Guide

Chapter 8 - Using z/XPF-PC

z/XPF-PC extends z/XPF’s reporting to the desktop environmnet. You can compress data
capture reports and ship them down to the PC platform via FTP for processing on the
decktop. z/XPF-PC allows you to use a GUI interface for summary reporting, with a number
of advantages:

* The concept of “Time Segments” goes away. Each event is a discrete data point.

* You can see line graphs, bar graphs and pie charts for statistics in your reports

* You can easily drill down in the same way as you can with z/XPF’s dynamic ISPF, but you
get a good deal more granularity.

z/XPF-PC is tailor-made for people who look at many reports in a single day and need a way
to quickly spot trends. z/XPF-PC is also good for people who are more comfortable with a
graphical interface rather than tabular reports. It's fast and intuitive!

What are the downsides? Well, you need to compress your data capture reports on the
mainframe side, and format them for FTP transmission to the desktop. Depending on the
sized of your report, this can take significant time and resources to accomplish. Also, the
desktop machine needs to have plenty of memory and a decent processor.

[Example: Our test code for this release contained about six million events. Running on a
3.06GHz processor with 8GB of RAM, the decompression took just over two minutes. The
parsing operation took a LOT longer. This not unusual. It is the consequence of asking z/
XPF-PC to process large amounts of data.]

8-1 System Requirements for z/XPF-PC

z/XPF-PC needs at least 2GB of RAM in order to process the large amounts of data that
form its reports. More memory is desirable.

z/XPF-PC will run on Windows XP Service Pack 3 and above, with Microsoft .NET Frame-
work 4.0 and any other components that .NET Framework requires.

8-2 Installing z/XPF-PC

z/XPF-PC is delivered with the rest of the z/XPF product in a file called “<zXPF-VnRnMnn>.
zxpf”’. It has been compressed using WINZIP. In order to get past various e-mail filters,
we alter the file-extension from “.zip” to “.zxpf”. When the file is downloaded and decom-
pressed you will be left with “zXPFPC.exe”, which you merely execute in the desktop envi-
ronment

When you execute zXPFPC.exe and agree to the terms of the EULA, z/XPF-PC will pres-
ent a list of components to install. Make your life easy; accept the defaults!

DUKESOFTWARE. | 125

Next, z/XPF-PC prompts you for a destination folder and a Start Menu folder. Accept the
defaults or put z/XPF-PC wherever you wish. Now, click on the “install” button.

Upon installation, z/XPF-PC will check for MicroSoft .NET Framework release 4.0.

You will see the executable file "zXPF PC v2.exe” in the folder that you choose to install z/
XPF-PC into. You may create a shortcut to this .exe file, and place the shortcut wherever
you wish.

When you get the “Installation Complete” dialogue box, z/XPF is ready to use. Close this
box and start up the product using the shortcut icon.

[The first time you create a new report with z/XPF-PC, you will be asked , “Please choose
a default folder where z/XPF-PC will store report databases. Create a new folder, or se-
lect a folder on your hard drive.]

8-3 Creating an FTP Connection to Your Mainframe

After you install z/XPF-PC you will need to establish an FTP connection to your mainframe.
Click File/New Report/From Mainframe, and z/XPF-PC will take you to the Download z/XPF
Report file. Click on “Add FTP account” and you will see the panel below in Figure 8-3-1:

|| ColeSoft afl Connect |

Report dataset HLQ: |BOB™

© Ftp Account

. Report Ac-lldress Space | Report Date | Report Time
Server Information

Server Name: Cpl_e_S_qﬂ

Host: [24.116.34.125
User Name: | bob

Password: ssseses

Ftp Information

Port: |21

Figure 8-3-1.

126 | z/XPF User’s Guide

Fill in your own installation-specific values and test the connection. When the connection
works, then you can move on to getting a report from the mainframe.

8-4 Prepare a z/XPF Data Set for Download to the Desktop

On the mainframe side within z/XPF, you need to allocate a report and compress it for FTP
download to the desktop.

[Please note that in a future iteration of z/XPF-PC we’ll remove the need to compress the
dataset]

In the panel below, I’'m getting ready to execute Option 9, to compress my already-allocated
report: See Figure 8-4-1 below:

— ==L XPF PRIMARY CREATE PROFILE HMEHNU

Enter Option
Select source capture dataset to use in report process.
Displag user comments in selected source capture datasets.

List library contents contained in selected capture dataset.
Free al located source capture dataset.
Map load modulessdisplay load module maps in selected source dataset.

View profile summary data. Summary statistics categorized by

Work Unit, Load Module, Csect. and P5W offset. Includes DB2
statistics if the target accessed a DB2 system.

View profile summary data specifying Time Segments. Same reports as
option 6 above. but can set Time Segments as small as one second.

Create a profile detail report. View event data by event type.
Create datazset=s for FTP process. Createsz a compressed dataset to
be downloaded and used by z- XPF-PLC.

Set report BrowsesView, dataset wvolser and unit tuype.

PF3/END to return to previous panel

Figure 8-4-1.

Now | am given a chance to alter the compression value. | usually leave the compression
value set to “5”. See Figure 8-4-2 below:

—==F i XPFE
OPTION
Set desired compression value
The compression value is used when compressing the data. Yalid
values are 1 thru 9. Setting this to 1 indicates best speed
while 9 indicates best compression.

Output dataset =ize. The difference in output dataset =ize
between the two is= about 35 percent. The =ame input source
capture dataset will produce a compressed output dataset

that i=s 35 percent larger when 1 is specified as opposed to 9.
However, there isn't much gained in reduced size beyond level 5,

while there is a significant increase in elapsed time.

Speed of compression. Best compression takes roughly 4 times
longer to execute than best speed.

=1 ¢{== Set Compression value. Default is 5.
Depress Enter Key To Compress data.

PF3/END To Return To Previous Panel

Figure 8-4-2.

If I press Enter on this panel, z/XPF performs the compression step. This grinds away, and

DUKESOFTWARE. | 127
you may as well find somethine else to do for a while.

Once this step is complete, I'll go to the desktop environment and download the file. To do
that | go to z/XPF-PC and issue File/New Report/From Mainframe. Press the “Connect’
button and z/XPF-PC presents the panel below, in Figure 8-4-3:

© Download z/XPF Report

Report dataset HLQ: | BOB*

Report Address Space Report Date | Report Time Report Dataset Drescription

BOB 3/12/2014 12:21 PM 'BOB.ZXPFCMPR.D031214.T122140.BOB' Compressed report datasst
DADIVP 3/19/2014 1:48 PM 'BOB.ZXPFCMPR.D031914.T134815.DADIVP. Compressed report dataset
BOB 3/19/2014 2:08 PM 'BOB.ZXPFCMPR.D031914. 7140822 BOB' Compressed report dataset

3 reports found

Figure 8-4-3.

Select a file by high-lighting it and press the “Download” button. z/XPF-PC will prompt you
to navigate to a folder that will store the report. Select that folder, the file will download and z/
XPF-PC will parse the report. This can take a few minutes. You can watch the progress bar
or find something else to do.

128 | z/XPF User’s Guide

When the report has been prepared, you will see a panel that looks like this, in Figure 8-4-4
below:

@ z/XPF PC v2 (2.1.6.4) - Report: ZXPF.BOB.D031214.T145652.PROFL
File View Options Help

20000
15000
10000

5000

J

s

Hd

usuabeuepy Aowsy
YrusEuy welBosy
yedag gis

FQU3 NS

WEY NS

yapedsiq) yse|

Jdnusqu] EwEpG [elsusg |,|
snnes paswl ¥Ef0d

Figure 8-4-4.

You can select from one of the four major categories by clicking on it.

DUKESOFTWARE. | 129

The first report that users tend to gravitate towards is Report Events Across Time. To zero
in on that report, click View/Events Across Time. You'll isolate that report as below, in Figure
8-4-5:
® 2IXPF PC v2 (2.1.6.4) -Report: ZXPF.B0B.D031214.T145652.PROFL.

Fle View Options Help

f
Report Information Event Types

20000

17500

15000

12500

10000

7500

5000

2500

1]

Figure 8-4-5.

In any of z/XPF-PC'’s reports you can left-click and drag to zoom or pan. You can right click
on any data point to reveal information on that instant in the report. It all works as you would
expect a PC application to. I'm getting ahead of myself. Let’s explore the interface.

130 | 2z/XPF User's Guide

8-5 Viewing Reports with the z/XPF-PC GUI interface

After parsing, or upon opening a report, z/XPF-PC opens its general interface. You will see
this in the top of your panel, as in Figure 8-5-1 below:

© z/XPF PC v2 {2.1.6.4) - Trial Version (6 days left)
Wiew Options Help

Figure 8-5-1.

Under the File menu, you can choose from New Report, Open Report, Close Report,
Recent Reports and Exit.

Under the View Menu, you may use View to select from the folllowing reports:

* Events across time;

* Work Units;

 Event Breakdown;

* Contention/Wait Time;

« SVC Breakdown;

« PC Breakdown (Program Call);

* PR Breakdown (Program Return);
* PT Breakdown (Program Transfer).

Until you open a report, “View” is grayed out. Other choices also remain grayed out until
they become relevant.

Under the Options menu, you can choosed to establish or change the default file direc-
tory, where
z/XPF-PC will store its report databases after parsing.

Under the Help menu, you can open the z/XPF-PC User Guide, view the z/XPF-PC Log
file (useful for debugging), and register your copy of z/XPF-PC.

DUKESOFTWARE. | 131
8-6 The z/XPF-PC display

The left hand side of the display shows the number of events on the vertical Y axis, and
Data Points (or time) on the horizontal X access. While z/XPF on the mainframe offers you
the ability to split your report in up to ten “Time Segments”, z/XPF-PC defaults to one sec-
ond intervals OR a maximum of 600 “data points” along the horizontal X axis.

Please note that the meaning of the X and Y axes are fluid, and shift with the context of the
report view. An example of a the Work Units report appears below, in Figure 8-5-2:

& z/XPF PC v2 (2.1.6.4) - Report: ZXPF.BOB.D031214.T145652.PROFL
15 Wiew Options Help

Report Information |

100000

10000

1000

WYY
4dS
NMONANI

(e

Figure 8-5-2.

8-6 A Short Review of z/XPF’s Reporting Structure
z/XPF’s reporting structure follows a distinct hierarchy:

» Atthe top level are time segments - the entire span of the job, divided evenly into blocks
of time. On the mainframe, z/XPF allows as many as one-second time segments.
z/XPF-PC, however, gives you much finer granularity.

» Atthe next level, zZ/XPF shows “Work Units”, which can either be individual tasks or
individual SRBs.

+ Atthe next level, zZZXPF shows modules.

* Within modules are csects.

» Within csects, z/XPFdisplays individual PSW offsets.

132 | z/XPF User’s Guide
8-7 Drilling down into “Events Across Time”
Looking at the Events Across Time display, one can quickly see where the most events oc-
curred. In this section we’ll drill down through the report until we can go no further, to find
out WHY so many events occur at this time in our data capture.

First, we select the “Events Across Time” tab in the report. See Figure 8-7-1 below: :

© 2/XPF PC v2 (2.1.6.4) - Report: ZXPF.BOB.D031214.T145652.PROFL
File View Options Help

Report Information Event Types

20000

17500

15000

12500

10000

7500

5000

2500

Figure 8-7-1.

DUKESOFTWARE. | 133

In this graph, you would be most interested in the time segments with the greatest number
of events. That's where most resources may be consumed. So, we left-click and drag to
magnify the area as below, in Figure 8-7-2:

© zPF PC v2 (2.1.6.4) - Report: ZXPF.BOB.D031214.T145652.PROFL
Fle View Options Help

Report Information Event Types

20000
17500
15000

12500

10000

7500
5000

2500

12 Mar 14:57

Figure 8-7-2.

134 | z/XPF User’s Guide

After the left-click and drag operation, z/XPF-PC'’s display will zoom into the selected area.
Now you can see each “time segment” in the graph more distinctly. Please see Figure 8-7-
3, below:

© z/XPF PC v (2.1.6.4) - Report: ZXPF.BOB.D031214.7145652.PROFL
Fle View Options Help

Report Information Event Types

12000
11000
10000
9000
8000
7000

6000

14:58:05 14:58:10 14:58:15 14:58:20 14:58:25 14:58:30

Figure 8-7-3.

[To UN-ZOOM, please RIGHT-CLICK to reveal the functions available to you, which
includes “Undo Zoom/Pan”. Zooming can also be accomplished by using the mouse
wheel-button to zoom in and out.]

You may also left-click, and drag to magnify your selection further.

8-8 Obtaining Detailed information, and drilling down

Whenever you wish, you may left-click on a point in the graph. You will receive a detailed
report on that particular data point. You will also have access to the “Drill Down” function.
This will take you to the next level down in the report. In the context of this display (“Events
Across Time”), this will drill down from the Time Segment level to the Work Unit Level.

DUKESOFTWARE. | 135
Obviously, one of the points in the graph shows a higher event count for that segment.
We’'ll select that point on the graph below in Figure 8-8-1: :

© z/XPF PC v2 (2.1.6.4) - Report: ZXPF.BOB.D031214.7145652.PROFL
File View Options Help

Report Information Event Types

12000

11000 Segment B4 (371272014 2:58:1F 371272014 2:5B:16 FM)
Humber of Work Units 9
Humber of Modules in Segment : 884

10000 Humber of Events in Segment: 11725 (3.70% of total events)
g - Swvc: 4894 ({41.74% of segment events)
BCs: 2790 | % of segment events)
A PRs: 2800 (of segment events
9000 { o O)
PC/BR Entered Services: 782 (6.67% of segment ewvents)

o Contention: 9 (0.0B% of segment ewvents)
8000 Elapsed Contention: 00.00.00:00.1078

- Waita: 2 (0.02% of segment events)
— Elapsed Wait: 00.00.00:00.0474
7000
Memory Events: 2217 (18.91% of segment events)

Interrupt Events: 177 {1.51% of segment events)
6000

14:58:05 14:58:10 14:58:15

Figure 8-8-1.

136 | z/XPF User’s Guide

Next, we click on the “Drill Down” button. Now we see the two work units running at the
time of Segment #18 in the report, “APIVPZRO” and “APIVPONE”, though APIVPZRO’s
event count was negligible. See Figure 8-8-2, below:

© zDPF PC v2 (2.1.6.4) - Report: ZXPF.BOB.DD31214.T145652.PROFL
Fle View Options Help

4

Report Information Event Types

10000

7500

]

2500

IEAVEPST JOO(CALL IRARMRMR ISPTASK] IKTIMLUZ2 PEQH-XCS IGGPUACR SRBDFLT

Figure 8-8-2.

DUKESOFTWARE. | 137

Selecting XXXCALL gives us more information, and the opportunity to “drill down” again:
Clearly, most of the events occurred in Work Unit APIVPONE. We'll left-click to see Figure
8-8-3 below:

® 2/XPF PC v2 (2.1.6.4) - Report: ZXPF.BOB.D031214.T145652.PROFL
File View Options Help
a=

Report Information Event Types

10000
XCALL - (0000015C0000000200000049007BASER)
modules in work unit: ¢

3 in work unit: 10523 (89.75% of sSegment's events)
7500 vea: 42B6 (40.73% of work unit's events)

- PBCs: 271B (23.83% of work unit's events)
PRs: 2732 (25.9%6% of work unit's events]

BC/BR Entered Servi : 992 (5.63% of work unit's events)

5000 Contention Events: work unit's ewvents)
Elapsed Contenticn 93

Memory Events: 2008 {19.%4% of work unit's events)
- Svc Memory Events: 12
- Pc Memory Ewents: 2055
=: — Br Entered Memory Ewventg: &
2500 - 64-bit Memory Events: 25

Interrupt Events: 77 {(0.73% of work unit's events)
— General External Interrupts: 10
— Program Interrupts: 35

|ﬁ5l = Clock Comprt Interrupts: 30

e — IQ Interrupts: 2

IEAVEPST XOO{CALL IGGPUACR SRBDFLT

[

Figure 8-8-3.

138 | z/XPF User’s Guide

Let’s drill again. Now we can see the modules running under Work Unit XXXCALL below, in
Figure 8-8-4:

© z/XPF PC v2 (2.1.6.4) - Report: ZXPF.BOB.D031214.T145652.PROFL
File View Options Help

.

Report Information Event Types

6000

5000

4000

3000

2000

1000

Figure 8-8-4.

Or, can we? z/XPF-PC is dutifully showing you ALL the 10,523 events across 802 modules
within XXXCALL. The resultis VERY cluttered! Let’s clean it up.

DUKESOFTWARE. | 139
Clearly, the left side of the screen has more activity (see the tiny blue “spike” in the graph?).
If we left click and drag, z/XPF-PC will give us a more focused, and cleaner display. The
intermediate step is to click and drag as in Figure 8-8-5:

® z/XPF PC v2 (2.1.6.4) - Report: ZXPF_BOB.D031214.T145652.PROFL
File View Options Help

.

Report Information Event Types

6000

5000

4000

3000

2000

1000

Figure 8-8-5.

z/XPF User’s Guide

140 |

ol
[
(=]
=
B
o~
n
)
n
=+
-
£
=
-
o~
—
m
=
=
-]
=
=
L
a
>4
|
=
=
a
g
o=
5
N
wa
-
o
o
-
(&)
&
ek
g
M
L]

Now the display is a good deal more intelligible. See Figure 8-8-6:

Event Types

Report Information

PNE
ISGGRT
ISPSUBS
ISPSUBX
IGC0009D
HASCPHAM
HASCHAM
IEAVETRC
XXXTFS
IGDHCIO1
PEQH2276
IAXVG
CSVLLSCH

-6.

8

Figure 8

PEQH
PEQH1998
PNEH18S

PEQH1988
PEQH1986

PEQH197
IEAVEWAT

DUKESOFTWARE. | 141

Now, we see that the module XXX1SRVC shows the greatest number of events for the
Work Unit XXXCALL within Time Segment #84. If we drill here, then z/XPF will drill again,
and show us the PSW offset we’re interested in. See Figure 8-8-7 below:,

(ﬁ' zfXPF PC v2 {2.1.6.4) - Report: ZXPF.BOB.D031214.T145652.PROFL

| View Options Help
4=

" Report Information Work Units Work Units

1000

X'000001DC’ x'00000242' X'00000496" x'00005582" X'0000572F' X'0000654E X'00007482"

Xx'000001DE x'0000046A' x'00000498" x'00005604" X'00005770" X'000065F2" x'00008036

Figure 8-8-7.

Now, we HAVE skipped a step. We went directly from the module level display to the PSW
offset, SKIPPING THE CSECT level. That is because in this particular case, z/XPF could
not find a Binder Map for the module, so it cannot determine csect boundaries within the
XXX1SRVC module. So, it appears that the offset X’496” into module XXX1SRVC is our
“heaviest hitter” within Time Segment #84.

142 | z/XPF User’s Guide

We cannot drill from here, but we can left-click and get a final level of information in this
case. Please see Figure 8-8-8 below:

© z/XPF PC v2 [2.1.6.4) - Report: ZXPF.BOB.D031214.T145652.PROFL
Fle View Options Help
A

Report Information Work Units Work Units

Work Unit
Mpdule:

ents at offget: 1421

1000 - 703 SVC Enter ts (60 STAE-ESTAE)
o - 718 S5VC Return Events (60 STAE-ESTLAE)

4]
x'00000 x'00000242' x'00000496' x'00005582' x'0000572F' x'0000654E' x'00007482°
X'000001DE' X'0000046A" X'00000498" x'00005604" X'00005770" X'000065F2" X'00008036

Figure 8-8-8.

That is as “deep” as z/XPF-PC can report. We have progressed step-wise from the Time
Segment (in this case the entirety of the report), to the Work Unit, to the module to the the
PSW offset. z/XPF-PC has displayed comprehensive information at each level, and you
will have gained a good deal of information that may have been useful.

At this point you can use the left arrow (in the upper left corner, under “File”) to back out
successively until you reach another interesting screen or until you get to the initial display.

DUKESOFTWARE. | 143
8-9 The Work Units Report

If you select the second tab in the initial display, you’ll see something like this, in Figure 8-9-
1 below:

© zPF PC v2 (2.1.6.4) - Report: ZXPF.BOB.D031214.T145652.PROFL
Hle View Options Help
el

Report Information Event Types Events Across Time

100000
10000

1000

aYSdAOI

e

0 @
& :
a - 1
= =

Figure 8-9-1.

Here are all the Work Units that were detected during the data capture. You can left-click/
drill down into each of these Work Units. Some might be drawn to the “heaviest hitter”,
which is XXXCALL(2).

[Be advised: If you zoom into a very busy report it will appear as if “nothing is happen-
ing” for a while. The opposite is true! z/XPF-PC is driving your desktop machine very
hard to perform your request and you may have to wait for the report to be displayed.]

144 | z/XPF User's Guide
8-10 The Event Breakdown Report

Selecting View/Event Breakdown yields a report that looks like Figure 8-10-1 below:

8 ZMXPF PC v2 (2.1.6.4) - Report: ZXPF.BOB.D031214.T145652.PROFL
File Wiew Options Help
b

Report Information Event Types Events Across Time Work Units

10000

1000

winay JAs
yojedsiq yselL

0 =
(=] o
(e =
= =
=
0 3]
(=} =
= [=
=
=2 e
b

awabeuew Alowapw
201es pasaiul ue/dd
[puueYDgnS VES
ymedsiq qus puadsns

Figure 8-10-1.

This report delivers all the different kinds of events in the report categorized by type. Again,
a left-click and drill down operation will reveal sub-categories.

DUKESOFTWARE. |145
8-11 Contention/Wait Time

Selecting “View/Contention/Wait Time” in the menu bar at the top of the display,will show
you the report below in Figure 8-11-1:

© z/XPF PC v2 (2.1.6.4) - Report: ZXPF.BOB.D031214.7T145652.PROFL
Fle View Options Help
i

Report Information Event Types Events Across Time Work Units Event Types

Figure 8-11-1.

146 | z/XPF User’s Guide

If | click on one slice of the pie, it “floats” away from the whole, and gives me summary in-
formation and the opportunity to drill down. See Figure 8-11-2 below:

© z/XPF PC v2 (2.1.6.4) - Report: ZXPF.BOB.D031214.T145652.PROFL
Ale View Options Help

4=

Report Information Event Types Events Across Time Work Units Event Types i

Contention
- Number of Eventa: 507
- Elapsed Contention: 00.00.00:06.3340

Figure 8-11-2.

DUKESOFTWARE. | 147

This is cool enough that | should probably do a few more drills to show you z/XPF-PC’s
extreme level of “wonderfulness”. See what happens when | drill into the large, blue piece
of the “pie” in Figure 8-11-3:

@ ZNPF PC v2 {2.1.6.4) - Report: ZXPF.BOB.D031214.T145652.PROFL
File View Options Help

= =

Report Information Event Types Events Across Time Work Units Event Types |

J——

SVC ENQ

Figure 8-11-3.

148 | z/XPF User’s Guide
I'll left-click and drill on the vertical bar on the right, to arrive at Figure 8-11-4, below:

@ z/XPF PC v2 {2.1.6.4) - Report: ZXPF.BOB.D031214.T145652.PROFL
Al View QOptions Help

.

Report Information Ewent Types Events Across Time Work Units Event Types |

YHXCALL(2) ALLOC
YOKCALL EXEC(2)

Figure 8-11-4.

| 149

DUKESOFTWARE.

8-12 SVC Breakdown

® 2{PF PC v2 (2.1.6.4) - Report: ZXPF.BOB.D031214.T145652.PROFL

If | select “View/SVC Breakdown, I'll get a panel similar to Figure 8-12-1 below:

Contention/Wait Time

W

Eve

Work Units

Events Across Time

Report Information Event Types

000

10

P ek ek ek et et ol P N BT T D BT

== b L

198 UNDEF/USER. SVC
196 UNDEF/USER SVC
194 UNDEF/USER SVC
DEF/USER SVC
JNDEF/USER SVC
NDEF/USER SVC

186 UNDEF/USER SVC

5138 PGSER

121 VSAM
120 GETMAIN-FREEMAIN

I-119 TESTAUTH

117 DEBCHECK
114 EXCPVR
109
DYN
STAX
STCC
TGET/TPUT/TPG

STAE-ESTAE

ENQ

EOV

DEQ
STIMER-STIMERM
TTIMER-STIMER

EXTRACT
OBTAIN
CATALOG-L!

Figure 8-12-1.

OPEN TYPE=]
STOW

CLOSE

OPEN
BLDL-FIND
PURGE
ABEND
SYNCH

TIME

» = b BLn S

(=N =]

150 | z/XPF User’s Guide
8-13 PC/PT/PR Breakdown

Finally, if you select “View/PC Breakdown” (or PR or PT Breakdown), then z/XPF-PC will
display Program Calls, Program Returns and Program Transfers. There’s no need for me
to go into each one separately because you get similar panels in each case. Here is a
summary report for Program Calls (PC Breakdown), in Figure 8-13-1:

© 2/XPF PC v2 (2.1.6.4) - Report: ZXPF.BOB.D031214. T145652.PROFL CEX
File View Options Help
-

Report Information Event Types Ewents Across Time Work Units Event Types Contention/Wait Time SVC Event Types PC Event Types PR Ev o

10000

1000

Figure 8-13-1.
Again, it's possible to drill down from any of these displays to deeper levels of the report.

Explore! Have fun. By now you should have a good idea how z/XPF-PC works. Bear in
mind that we will continue to add functionality over time.

152 | z/XPF User's Guide

Index

Symbols

1-9 About ZXPFLOG, 16

1st line of each Event Record:, 114

2nd line of each Event Record:, 114

3-2 z/XPF Control Statements Explained, 20

4-1 ZXPFTRAC - z/XPF’s “User Trace” Function, 28

4-2 How to use ZXPFTRAC, 28

4-3 Understanding the output of ZXPFTRAC, 29

4-4 ZXPFDYNL - Tracking the “Life-span” of modules loaded by Directed Loads, 30
4-5 ZXPFDYNL macro specifications., 31

4-6 Tracking the activity of the ZXPFDYNL Macro, 34

5-1 Summary Reporting vs. Detail Reporting, 35

5-2 z/XPF’s Reporting Hierarchy, 35

5-3 z/XPF and Virtual Storage, 36

5-4 How z/XPF Maps Load Modules, 36

5-5 Mapping “User-defined” Load Modules, 37

5-6 Allocating a dataset for reporting, 38

5-7 Beginning the Reporting Process, 39

5-8 Option 1: Allocating A Data Capture Dataset, 41

5-9 Option 2: Display user comments in selected source data capture datasets, 43
5-10 Option 3: Listing Library Contents, 46

5-11 Option 4: Freeing Allocated Source Capture Datasets, 48

5-12 Option 5: Map load modules/display load module maps, 49

5-13 Summary Reporting, 51

5-14 Option 6: Create Profile Summary Reports - zZXPF’s Dynamic ISPF panels, 51
5-15 Navigating in Dynamic ISPF, 53

5-16 Data Categories, by Work Unit, Within Time Segment, 55

5-17 Most Frequently Observed PSW/Instruction Report, 65

5-18 Processor Utilization Statistics, 67

5-19 Option 7: Creating much smaller Time Segments in your report, 72, 75
5-20 Source Statement Support, 76

6-1 How z/XPF Uses DB2 Catalog Information, 87

6-2 Accessing z/XPFE’s DB2 Summary Reports., 89

7-1 Option 8: Create a profile detail report., 99

7-2 Detail reporting by Work Unit Name, 101

7-3 Detail reporting by Time other than Data Capture Begin and End, 105
7-4 Detail reporting by Record Number In source Dataset, 106

7-5 Detail reporting by Record Type, 107

7-6 Detail reporting by Location Of PSW, 108

7-7 Detail reporting by Load Module Name, 108

7-8 Tips And Techniques For Creating Detail Reports, 109

7-9 Understanding the Fields in Event Records, 114

8-1 System Requirements for z/XPF-PC, 124

8-2 Installing z/XPF-PC, 124

8-3 Creating an FTP Connection to Your Mainframe, 125

8-4 Prepare a z/XPF Data Set for Download to the Desktop, 126

8-5 Viewing Reports with the z/XPF-PC GUI interface, 130

8-6 A Short Review of z/XPF’s Reporting Structure, 131

8-6 The z/XPF-PC display:, 131

8-7 Drilling down into “Events Across Time”, 132

DUKESOFTWARE. | 153

8-8 Dirilling down, 134

8-8 Obtaining Detailed information, and drilling down, 134
8-9 The Work Units Report, 143

8-10 The Event Breakdown Report, 144

8-11 Contention/Wait Time, 145

8-12 SVC Breakdown, 149

8-13 PC/PT/PR Breakdown, 150

A

Adding Text/Comments To A Data Capture Request, 12
ALOCUNIT =xxooooox, 21
ALOCVOL=xxxxxx, 20

ASC=, 120
B

BASE-=, 120
C

Chapter 3 - z/XPE’s Control Statements, 20

Chapter 4: z/XPF’s Auxiliary Macros, 28

Chapter 5 - Creating Reports, 35

Chapter 6 - Creating DB2-Specific Summary Reports, 87
Chapter 7 - Detail Reporting, 99

Chapter 8 - Using z/XPF-PC, 124

D

DATA_CAPTURE_DS_BUFFERS=nnn, 21
DATA_CAPTURE_DSN_HLQ=xxooxxx, 21
DB2=XXXX,SDSNLOAD=YYYYY.ZZZ7777,22
DEVICE=, 120

DEV STATUS =, 121

Display/Cancel Session Requests In Start-By-Time Queue, 19
DISPLAY OR CANCEL SESSION QUEUES, 17

Display Requests In Start-By-Jobname Queue, 18

DRVR ID=,120

E

ENQ_Contention using ISGENQ, 113
EVENT=PGM INTRRUPT, 118
EVENT=START SUBCH, 120

F

FORCE_VENDOR_TABLE=YES, 22
Future Start by Date and Time-of-Day, 15
Future Start-By-Jobname, 14

H
HASN-=, 120

IEFUSL 6
IMMEDIATE START DATA CAPTURE SESSION, 7

154 | z/XPF User's Guide

Installing z/XPF-PC, 124

INSTR ADDR=, 120
INTERVAL_TOLERANCE_PERCENTAGE-=nn, 22
IOSASID-=, 120

issue the SOURCE command, 85

K

KEY=, 120

L

L C=xxoooocooooooxx, 20
LM-=,120

LOC-=,120

M

MAP_LMOD_DURING_CAPTURE=YES/NO, 23
MAPLPA=NO, 23
MAX_MSG_DURING_CAPTURE=1000/NNNNNN, 24
MODE-=, 120

N

NBR_COPYCYCLES_PER_SECOND=50/nnn, 24
NBR_COPYCYCLES_PER_SECOND=nnn, 24

(o)
OFFSET=, 120

P

PASN=, 120

PER, 8

PR_BUFFERS=ASIS, 25
PR_BUFFERS=nnn, 25
PRIMARY OPTION PANEL, 5
PSW-=, 120

R

RACF_PROFILE="hlgq, 25

RACF_PROFILE="hlq”, 25

Reporting on Abends in a program:, 110

Reporting on device I/O Activity:, 109

Reporting on Page Faults and Program Interrupts, 110
RESET_SRVCLASS=XXXXXX, 26
RESTARTDSN=dsname, 26

S

SCHEDULE A DATA CAPTURE SESSION, 6
SLIP, 8

SLIP_COMMANDS=YES/NO, 26, 27
SLIP_ID=xxxx, 26

SOURCE command, 85

source statement displays, 76
SSCLEAR=YES/NO, 27

DUKESOFTWARE. | 155

SSNAME=xxxx, 26
STATE=,120

Stop an Active Data Capture, 17
SUBCH STATUS =, 121
SYSIBM.SYSPACKAGE, 88
SYSIBM.SYSPACKDEP, 88
SYSIBM.SYSPLAN, 88
SYSIBM.SYSPLANDEDP, 88

T

TCB=, 120

The Seventh field of the ALLOCATE DATA CAPTURE DATASETS panel: “Add non-CDE load module info to
capture dataset. (yes/no)”, 42

Time Spent Waiting For A Latch:,112

To get a “feel” for how 1/0 operations affect a program, 109

To investigate lock suspension times:, 111

TOKENS=, 120

U

USER_TRACE_NBR=0-F, 27

Using the fifth field of the ALLOCATE DATA CAPTURE DATASETS panel:, 42

Using the first four fields of the ALLOCATE DATA CAPTURE DATASETS panel:, 41

Using the sixth field of the ALLOCATE DATA CAPTURE DATASETS panel: “Map Load Modules during alloca-
tion process”, 42

USR_DEF_LMOD=nnnnnnnn,BEGIN=xxxxxxxx, END=yyyyyyyy, 27

w

Working With z/XPF Request Queues, 17
WORK UNIT=, 120
WRITE_TO_LOGREC=YES, 27

y 4

ZXPFDYNL, 31
ZXPFLOG, 16

z/XPF-PC, 124

z/XPF’s FIND Command, 54
ZXPFTRAC, 28

	Chapter 1 - Welcome to z/XPF
	1-1 What is z/XPF?
	1-2 What Is z/XPF’s Anatomy?
	1-3 Scheduling a New Data Capture
	1-4 Immediate Start
	1-5 Using SLIP/PER with z/XPF
	1-6 Adding Text/Comments To A Data Capture Request

	1-7 Future Start-By-Jobname
	1-8 Future Start by Date and Time-of-Day
	1-9 About ZXPFLOG

	Chapter 2 - Working With z/XPF Request Queues
	2-1 Stop an Active Data Capture
	2-2 Display Requests In Start-By-Jobname Queue
	2-3 Display/Cancel Session Requests In Start-By-Time Queue

	Chapter 3 - z/XPF’s Control Statements
	3-1 Input statements for z/XPF’s started task (the server address space)
	3-2 z/XPF Control Statements Explained
	LC=xxxx-xxxx-xxxx-xxxx
	ALOCVOL=xxxxxx
	ALOCUNIT=xxxxxxxx
	DATA_CAPTURE_DSN_HLQ=xxxxxxxx
	DATA_CAPTURE_DS_BUFFERS=nnn
	DB2=XXXX,SDSNLOAD=YYYYY.ZZZZZZZ
	FORCE_VENDOR_TABLE=YES
	INTERVAL_TOLERANCE_PERCENTAGE=nn
	MAP_LMOD_DURING_CAPTURE=YES/NO
	MAPLPA=NO
	MAP_LPAMOD=xxxxxxxx,DSN=yyyyy
	MAX_MSG_DURING_CAPTURE=1000/NNNNNN
	NBR_COPYCYCLES_PER_SECOND=50/nnn
	PR_BUFFERS=nnn
	PR_BUFFERS=ASIS
	RACF_PROFILE=”hlq”
	RESET_SRVCLASS=XXXXXX
	RESTARTDSN=dsname
	SLIP_COMMANDS=YES/NO
	SLIP_ID=xxxx
	SSNAME=ZXPF/xxxx
	SSCLEAR=YES/NO
	USER_TRACE_NBR=0-F
	WRITE_TO_LOGREC=YES

	Chapter 4: z/XPF’s Auxiliary Macros
	4-1 ZXPFTRAC – z/XPF’s “User Trace” Function
	4-2 How to use ZXPFTRAC
	4-3 Understanding the output of ZXPFTRAC

	4-4 ZXPFDYNL - Tracking the “Life-span” of modules loaded by Directed Loads
	4-5 ZXPFDYNL macro specifications.
	4-6 Tracking the activity of the ZXPFDYNL Macro

	Chapter 5 - Creating Reports
	5-1 Summary Reporting vs. Detail Reporting
	5-2 z/XPF’s Reporting Hierarchy
	5-3 z/XPF and Virtual Storage
	5-4 How z/XPF Maps Load Modules
	5-5 Mapping “User-defined” Load Modules
	5-6 Allocating a dataset for reporting
	5-7 Beginning the Reporting Process
	5-8 Option 1: Allocating A Data Capture Dataset
	5-9 Option 2: Display user comments in selected source data capture datasets
	5-10 Option 3: Listing Library Contents
	5-11 Option 4: Freeing Allocated Source Capture Datasets
	5-12 Option 5: Map load modules/display load module maps

	5-13 Summary Reporting
	5-14 Option 6: Create Profile Summary Reports - zXPF’s Dynamic ISPF panels
	5-15 Navigating in Dynamic ISPF
	z/XPF’s FIND Command
	5-16 Data Categories, by Work Unit, Within Time Segment
	5-17 Most Frequently Observed PSW/Instruction Report
	5-18 Processor Utilization Statistics
	5-19 Option 7: Creating much smaller Time Segments in your report
	5-20 Source Statement Support

	Chapter 6 - Creating DB2-Specific Summary Reports
	6-1 How z/XPF Uses DB2 Catalog Information
	6-2 Accessing z/XPF’s DB2 Summary Reports.

	Chapter 7 - Detail Reporting
	7-1 Option 8: Create a profile detail report.
	7-2 Detail reporting by Work Unit Name
	7-3 Detail reporting by Time other than Data Capture Begin and End
	7-4 Detail reporting by Record Number In source Dataset
	7-5 Detail reporting by Record Type
	7-6 Detail reporting by Location Of PSW
	7-7 Detail reporting by Load Module Name

	7-8 Tips And Techniques For Creating Detail Reports
	Reporting on device I/O Activity:
	To get a “feel” for how I/O operations affect a program:
	Reporting on Page Faults and Program Interrupts:
	Reporting on Abends in a program:
	To investigate lock suspension times:
	Time Spent Waiting For A Latch:
	ENQ Contention using ISGENQ

	7-9 Understanding the Fields in Event Records

	Chapter 8 - Using z/XPF-PC
	8-1 System Requirements for z/XPF-PC
	8-2 Installing z/XPF-PC
	8-3 Creating an FTP Connection to Your Mainframe
	8-4 Prepare a z/XPF Data Set for Download to the Desktop
	8-5 Viewing Reports with the z/XPF-PC GUI interface
	8-6 The z/XPF-PC display
	8-6 A Short Review of z/XPF’s Reporting Structure
	8-7 Drilling down into “Events Across Time”
	
8-8 Obtaining Detailed information, and drilling down
	8-9 The Work Units Report
	8-10 The Event Breakdown Report
	8-11 Contention/Wait Time
	8-12 SVC Breakdown
	8-13 PC/PT/PR Breakdown
	Conclusion
	About z/XPF-PC’s Author

	Chapter 9 Index

	Figure 191:
	here:
	below:
	First we select the Events Across Time tab in the report See Figure 871 below:
	Figure 8113:
	summary report for Program Calls PC Breakdown in Figure 8131:

